Waste less time on Facebook — follow Brilliant.
×
Back to all chapters

Dot Product of Vectors

The dot product (also known as the scalar product) is an operation on vectors that can tell you the angle between the vectors.

Dot Product - Properties

         

If \(\vec{u} = \langle 1, 2, 3 \rangle\) and \(\vec{v} = \langle 4, 5, 6\rangle\), then what is \(\vec{u} \cdot \vec{v}\)?

In the figure above, the point \(H\) is the perpendicular foot from point \(A\) on \(\overrightarrow{OB}.\) If \(\lvert\overline{OA}\rvert=7,\lvert\overline{OB}\rvert=9,\) and \(\lvert\overline{OH}\rvert=5,\) what is \(\overrightarrow{OA}\cdot\overrightarrow{OB}?\)

Note: The figure is not drawn to scale.

If \(\vec{u}, \vec{v},\) and \(\vec{w}\) are vectors, then which of the following is not a valid operation?

\[ \begin{align*} \text{A. } & \hspace{.35cm} (\vec{u}\cdot\vec{v}) + |\vec{w}| \\ \text{B. } & \hspace{.35cm} \vec{u}\cdot\vec{v}\cdot\vec{w} \\ \text{C. } & \hspace{.35cm} \vec{u}\cdot(\vec{v} - \vec{w}) \end{align*}\]

Remember! Both inputs for a dot product must be vectors.

If the vectors \(\vec{v}=(\sqrt{3},4,\sqrt{2})\) and \(\vec{u}=(\sqrt{6},0,k)\) are perpendicular, what must be the value of \(k?\)

Hint: If two vectors are perpendicular, then their dot product is 0.

If \(\vec{a}\cdot\vec{b}=3, \vec{a}\cdot\vec{c}=4, \vec{b}\cdot\vec{c}=-2,\) and \(\lvert\vec{b}\rvert=1,\) then evaluate \[(\vec{a}-\vec{b})\cdot(2\vec{b}+3\vec{c})\]

×

Problem Loading...

Note Loading...

Set Loading...