This is note \(1\) in a set of notes showing how to obtain formulas. There will be no words beyond these short paragraphs as the rest will either consist of images or algebra showing the steps needed to derive the formula mentioned in the title.

Suggestions for other formulas to derive are welcome, however whether they are completed or not depends on my ability to derive them. The suggestions given aren't guaranteed to be the next one in the set but they will be done eventually.

1 \[\large ax^2 + bx + c = 0\]

2 \[\large x^2 + \frac{b}{a}x + \frac{c}{a} = 0\]

3.1 \[\large x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\]

3.2 \[\large \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0\]

4 \[\large \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{4ac}{4a^2} = 0\]

5 \[\large \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}\]

6 \[\large x + \frac{b}{2a} = \pm\sqrt{\frac{b^2 - 4ac}{4a^2}}\]

7 \[\large x + \frac{b}{2a} = \frac{\pm\sqrt{b^2 - 4ac}}{2a}\]

8 \[\large x = \frac{- b \pm\sqrt{b^2 - 4ac}}{2a}\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestYup! This is the derivation of the quadratic formula. Great!

Log in to reply