$$1+x^n$$ in Fractions?

Could you calculate

$\large \int \frac{1}{1+x^n} dx$

for every positive integer $$n$$?

Note by Pepper Mint
7 months, 3 weeks ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Ok......What if someone replaces the + sign with a - sign........Can we solve it and generalize it??

- 4 months, 1 week ago

That is a good point we can use its series expansion... WAIT THE SERIES EXPANSION!!! We can use it to maybe SOLVE THE INTEGRAL (in series form BUT WHO CARES)!!! $\frac { 1 }{ 1+x } =1-x+{ x }^{ 2 }-{ x }^{ 3 }+{ x }^{ 4 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ n } }$ $\frac { 1 }{ 1+{ x }^{ 2 } } =1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ 2n } }$ $\frac { 1 }{ 1+{ x }^{ 3 } } =1-{ x }^{ 3 }+{ x }^{ 6 }-{ x }^{ 9 }+{ x }^{ 12 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ 3n } }$ So: $\frac { 1 }{ 1+{ x }^{ k } } =1-{ x }^{ k }+{ x }^{ 2k }-{ x }^{ 3k }+{ x }^{ 4k }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } }$ and...: $\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\int { (1-{ x }^{ k }+{ x }^{ 2k }-{ x }^{ 3k }+{ x }^{ 4k }-...)dx } =\int { \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } dx }$

Simplifying the integral of the right: (Not including the +C in the integral) $\int { \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } dx } =\sum _{ n=0 }^{ \infty }{ \int { { (-1) }^{ n }{ x }^{ kn }dx } } =\sum _{ n=0 }^{ \infty }{ \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } =x-\frac { { x }^{ k+1 } }{ k+1 } +\frac { { x }^{ 2k+1 } }{ 2k+1 } -\frac { { x }^{ 3k+1 } }{ 3k+1 } +\frac { { x }^{ 4k+1 } }{ 4k+1 } -...$ ... which is so far all the work that can be done, without using any special functions.

Thus: $\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\sum _{ n=0 }^{ \infty }{ { \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } }$ Done

- 3 months, 3 weeks ago

@Pepper Mint Well, we can solve this sort of definite integral ranging from 0 to infinity.........this is simply using Beta function....!!!

- 1 month, 1 week ago

But it won't help solve for the indefinite integral. hmm

- 4 weeks ago

Anyway, we know that: $\int { \frac { 1 }{ 1+{ x } } } dx=\ln { (1+x) } +C$ and $\int { \frac { 1 }{ 1+{ x }^{ 2 } } } dx=\arctan { x } +C$ but $\int { \frac { 1 }{ 1+{ x }^{ 3 } } } dx$ is a mess...

(Just in case you don't believe me): $\int { \frac { 1 }{ 1+{ x }^{ 3 } } } dx=-\frac { \ln { |{ x }^{ 2 }-x+1| } -2(\ln { |x+1| } +\sqrt { 3 } \arctan { (\frac { 2x-1 }{ \sqrt { 3 } } ) } ) }{ 6 } +C$

- 4 months, 1 week ago

Just glancing at it and some solutions computed with WolframAlpha, it looks like you have to use partial fractions to decompose it and then integrate term-by-term, which makes me unsure about whether or not a closed-form solution exists...

- 4 months, 1 week ago

Integrate term by term... that is correct. In fact, the terms you need to integrate are actually very surprising.. x^n and -x^k! The answer is that $$\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\sum _{ n=0 }^{ \infty }{ { \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } }$$!

- 3 months, 3 weeks ago

You can see the power rule in the summation!

- 3 months, 3 weeks ago

Comment deleted 3 months ago

This doesn't help!! We need another approach

- 4 months, 2 weeks ago

But how to use this, I mean without substitution can we have a direct approach?

- 4 months, 2 weeks ago