\(1+x^n\) in Fractions?

Could you calculate

\[\large \int \frac{1}{1+x^n} dx\]

for every positive integer \(n\)?

Note by Pepper Mint
7 months, 3 weeks ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Ok......What if someone replaces the + sign with a - sign........Can we solve it and generalize it??

Aaghaz Mahajan - 4 months, 1 week ago

Log in to reply

That is a good point we can use its series expansion... WAIT THE SERIES EXPANSION!!! We can use it to maybe SOLVE THE INTEGRAL (in series form BUT WHO CARES)!!! \[\frac { 1 }{ 1+x } =1-x+{ x }^{ 2 }-{ x }^{ 3 }+{ x }^{ 4 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ n } } \] \[\frac { 1 }{ 1+{ x }^{ 2 } } =1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ 2n } } \] \[\frac { 1 }{ 1+{ x }^{ 3 } } =1-{ x }^{ 3 }+{ x }^{ 6 }-{ x }^{ 9 }+{ x }^{ 12 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ 3n } } \] So: \[\frac { 1 }{ 1+{ x }^{ k } } =1-{ x }^{ k }+{ x }^{ 2k }-{ x }^{ 3k }+{ x }^{ 4k }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } \] and...: \[\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\int { (1-{ x }^{ k }+{ x }^{ 2k }-{ x }^{ 3k }+{ x }^{ 4k }-...)dx } =\int { \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } dx } \]

Simplifying the integral of the right: (Not including the +C in the integral) \[\int { \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } dx } =\sum _{ n=0 }^{ \infty }{ \int { { (-1) }^{ n }{ x }^{ kn }dx } } =\sum _{ n=0 }^{ \infty }{ \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } =x-\frac { { x }^{ k+1 } }{ k+1 } +\frac { { x }^{ 2k+1 } }{ 2k+1 } -\frac { { x }^{ 3k+1 } }{ 3k+1 } +\frac { { x }^{ 4k+1 } }{ 4k+1 } -...\] ... which is so far all the work that can be done, without using any special functions.

Thus: \[\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\sum _{ n=0 }^{ \infty }{ { \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } } \] Done

Oon Han - 3 months, 3 weeks ago

Log in to reply

@Pepper Mint Well, we can solve this sort of definite integral ranging from 0 to infinity.........this is simply using Beta function....!!!

Aaghaz Mahajan - 1 month, 1 week ago

Log in to reply

But it won't help solve for the indefinite integral. hmm

Oon Han - 4 weeks ago

Log in to reply

Anyway, we know that: \[\int { \frac { 1 }{ 1+{ x } } } dx=\ln { (1+x) } +C\] and \[\int { \frac { 1 }{ 1+{ x }^{ 2 } } } dx=\arctan { x } +C\] but \[\int { \frac { 1 }{ 1+{ x }^{ 3 } } } dx\] is a mess...

(Just in case you don't believe me): \[\int { \frac { 1 }{ 1+{ x }^{ 3 } } } dx=-\frac { \ln { |{ x }^{ 2 }-x+1| } -2(\ln { |x+1| } +\sqrt { 3 } \arctan { (\frac { 2x-1 }{ \sqrt { 3 } } ) } ) }{ 6 } +C\]

Oon Han - 4 months, 1 week ago

Log in to reply

Just glancing at it and some solutions computed with WolframAlpha, it looks like you have to use partial fractions to decompose it and then integrate term-by-term, which makes me unsure about whether or not a closed-form solution exists...

Aram Lindroth - 4 months, 1 week ago

Log in to reply

Integrate term by term... that is correct. In fact, the terms you need to integrate are actually very surprising.. x^n and -x^k! The answer is that \(\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\sum _{ n=0 }^{ \infty }{ { \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } } \)!

Oon Han - 3 months, 3 weeks ago

Log in to reply

You can see the power rule in the summation!

Oon Han - 3 months, 3 weeks ago

Log in to reply

Comment deleted 3 months ago

Log in to reply

This doesn't help!! We need another approach

Oon Han - 4 months, 2 weeks ago

Log in to reply

But how to use this, I mean without substitution can we have a direct approach?

Shreyansh Mukhopadhyay - 4 months, 2 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...