# 2 original proofs that harmonic series diverges

1. All positive integers but $$1$$ are divisble by at least one prime. The probability an integer is divisble by $$p$$ is $$\frac{1}{p}$$; the complement of that is $$1-\frac{1}{p}$$ and so the product over all primes $$\displaystyle \prod_{p \ \text{prime}} \left( 1-\frac{1}{p} \right) = 0$$. From the Euler product, we thus know $$\zeta(1)$$ is divergent.

2. Assume the harmonic series converges; then it converges absolutely, since all its terms are positive. This is obviously a contradiction, since we can tell it is conditionally convergent from the ratio/root test.

Note by Jake Lai
3 years ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

My proof for divergence requires no calculus.

$\dfrac {1}{1} + \dfrac {1}{2} + \dfrac {1}{3} + \dfrac {1}{4} + \dfrac {1}{5} + \dfrac {1}{6} + \dfrac {1}{7} + \dfrac {1}{8} + \ldots > \dfrac {1}{1} + \dfrac {1}{2} + \dfrac {1}{4} + \dfrac {1}{4} + \dfrac {1}{8} + \dfrac {1}{8} + \dfrac {1}{8} + \dfrac {1}{8} + \ldots$

$\dfrac {1}{1} + \dfrac {1}{2} + \dfrac {1}{3} + \dfrac {1}{4} + \dfrac {1}{5} + \dfrac {1}{6} + \dfrac {1}{7} + \dfrac {1}{8} + \ldots > \dfrac {1}{1} + \dfrac {1}{2} + \left( \dfrac {1}{4} + \dfrac {1}{4} \right) + \left(\dfrac {1}{8} + \dfrac {1}{8} + \dfrac {1}{8} + \dfrac {1}{8} \right) + \ldots$

$\dfrac {1}{1} + \dfrac {1}{2} + \dfrac {1}{3} + \dfrac {1}{4} + \dfrac {1}{5} + \dfrac {1}{6} + \dfrac {1}{7} + \dfrac {1}{8} + \ldots > \dfrac {1}{1} + \dfrac {1}{2} + \dfrac {1}{2} + \dfrac {1}{2} + \ldots$

$\dfrac {1}{1} + \dfrac {1}{2} + \dfrac {1}{3} + \dfrac {1}{4} + \dfrac {1}{5} + \dfrac {1}{6} + \dfrac {1}{7} + \dfrac {1}{8} + \ldots > \infty$

Hence proven.

- 3 years ago

Right! This is the classical proof of divergence of harmonic series using comparison. This proof is also featured in the Wikipedia page on Harmonic series. Hence, not an original proof.

- 3 years ago

Ye, but nonetheless, easy to remember.

- 3 years ago

Oresme reincarnate!

- 3 years ago

I'm surprised I know his name. Wasn't Nicole Oresme an astronomer, a mathematician and physicist?

- 3 years ago

Your proof is often attributed to Oresme.

- 3 years ago

Oh

- 3 years ago

Your proof #1 just went over my head since I'm not quite familiar with Euler product and stuff yet. So, I won't comment on that.

Regarding your proof #2, how can you "tell it is conditionally convergent from the ratio/root test" ? Both ratio and root tests can only be used to test either absolute convergence or divergence. In other cases when the criteria for divergence or absolute convergence is not met, the test is inconclusive. When the tests are inconclusive, the sum can be convergent (absolute / conditional) or divergent. You cannot say for sure that the series must be conditionally convergent using ratio / root test in such inconclusive cases (as far as I know). I'm saying all this based on the Wikipedia articles on ratio / root tests.

Correct me if I'm wrong.

- 3 years ago