Waste less time on Facebook — follow Brilliant.
×

2 Problems from math competition (OBEC IMSO) in Thailand.

I had a math comp. 3 days ago. And I can't do these problems. Stuck a lot. :<

1.) Triangle ABC given that AB = AC. Draw a line from B perpendicular to AC at point D. Draw another line from D perpendicular to BC at E. If BC = AB + AD, prove that BE = CD.

2.) Given a number \(x\) with more than 1 digit. If we write it twice (such as x = 137, we write it 137137), we'll get a number that is divisible by \(x^{2}\). Prove that the 2 first digits are 14......

Note by Samuraiwarm Tsunayoshi
3 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I just figured no. 2 out. XD

Given that \(x^{2} | \overline{xx} \rightarrow x^{2} | x(10^{n}+1) \rightarrow x | (10^{n} + 1)\).

Factor \(10^{n} + 1\) as \(a\times b\) where \(a, b\) are positive integers.

Since we know that both of them are odd numbers, but not divisible by 3 and 5 since \(3, 5 \not| (10^{n} + 1)\).

So \(a, b\) must be divisible by 7.

When we divide \(10^{n} + 1\) by 7, it always starts with 1, 4 for \(n \geq 2\). Hence, proven. ~~~

I always hate myself when I can't do it during the test but after the test. >:(

Samuraiwarm Tsunayoshi - 3 years, 7 months ago

Log in to reply

Let angle \(ACB\)'s size be \(x\).

Then angle \(EDC\)'s and angle \(EDB\)'s size will be \(90-x\) and \(x\), respectively.

From the properties, we will get that

\(\bigtriangleup BDE \sim \bigtriangleup BCD\)

Thus, \(\frac{BE}{BD} = \frac{BD}{BC}\)

\(BE = \frac{BD^{2}}{BC} = \frac{AB^{2} - AD^{2}}{AB + BD}\) (Pythagorean Theorem)\( = AB - AD = AC - AD \)(Isosceles Triangle)\(= DC\) \(Q.E.D.\) ซ.ต.พ.

พิสูจน์สองข้อนี้ผมแป้กในห้องสอบทั้งคู่ครับ ไม่ทราบว่าได้เหรียญอะไรอ่อครับ

Sanchayapol Lewgasamsarn - 3 years, 5 months ago

Log in to reply

ได้แค่เหรียญทองแดงเองคับ เสียไป 2 ข้อนี้ฟรีๆ เหมือนเส้นผมบังภูเขา T__T PS: ข้อแรกเพิ่งคิดได้ตอนนั่งคิดเล่นๆ ใช้เวลาแค่ 5 นาทีเสร็จ ==''

Samuraiwarm Tsunayoshi - 3 years, 5 months ago

Log in to reply

ผมก็ได้แค่เหรียญทองแดงครับ เจอเรขานี้ Let it go แต่ข้อ Number Theory แสดงไปซุยๆครับแค่สองบรรทัดแรก 555

Sanchayapol Lewgasamsarn - 3 years, 5 months ago

Log in to reply

@Sanchayapol Lewgasamsarn เหมือนกันเลยครับ T__T แต่ข้อเรขา เรานั่งลุยถึกสมมติตัวแปร x แล้วไล่หาทุกด้าน แฮ่กๆๆๆ

Samuraiwarm Tsunayoshi - 3 years, 5 months ago

Log in to reply

Hi Samuraiwarm!

Sorry, but I wasn't able to solve any of them. But could you please do me a favour?

Please send all the questions to me, I want to give all a try. My email address is sgsuper@yahoo.com, thanks.

Satvik Golechha - 3 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...