# 4TH day: SOLVE THIS INTERESTING PROBLEM

I SAID,I WOULD POST A QUESTION DAILY FOR DISCUSSING AMONG YOURSELVES..... SO HERE IS A NEW PROBLEM FOR TODAY.....THANKS TO ALL WHO JOINS THIS DISCUSSIONS .....WISHING ALL THE BEST.......:-)

Note by Raja Metronetizen
5 years, 4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

I AM HERE GIVING THE SOLUTION......TODAY I WOULD POST A NEW QUESTION....:).... If the integer is 1 its probability is log(1),if the integer is 2 its probability is log(2),if the integer is 3 its probability is log(3)……likewise if the integer is n then its probability is log(n)……..let A denote the statement that the chosen number is even…..and B denote the statement that the chosen number is 2…. So (A intersection B)=2……hence the required probability is P(B/A)=[P(A intersection B)]/P(A)=P(B)/P(A)=log(2)/[log(2)+log(4)+log(6)+log(8)+…….log(2n)] =log(2)/log[(2^n)n!]=log(2)/[nlog(2)+log(n!)]………….thanx for joining....:).....try my new problem.....

- 5 years, 4 months ago

I am getting the answer as $$\frac{log(2)}{n*log(2) + log(n!)}$$

- 5 years, 4 months ago

mine is the same.....then, you are right absolutely........could you prove your result.......??......:)

- 5 years, 4 months ago

Should not the answer be $$\frac {log(2)}{n}$$?

- 5 years, 4 months ago

Since number of positive even integers for first $$2n$$ numbers is simply $$\frac{2n}{2}=n$$. And, probability of getting 2 from all even integers can be expressed as $$\frac{log 2}{n}$$, according to the question

- 5 years, 4 months ago

sorry,your understanding about the question is wrong....please go through the question minutely.....you have not understood it......try it...best of luck....:)

- 5 years, 4 months ago

Can you point out my mistake, given that you have already solved it.

- 5 years, 4 months ago

i have already solved it.....:)...here you must think of conditional probability......that's my last hint.....try to think of this statement.......when we pick a number it is 2 given that the number is even........now i have almost said you what to do.......best of luck.....:)

- 5 years, 4 months ago