Waste less time on Facebook — follow Brilliant.
×

71 Day Streak Special

\[\large { \left( \sqrt { 10x+1 } +1 \right) }^{ 10x+1 }-{ \left( \sqrt { 10x+1 } -1 \right) }^{ 10x+1 }\]

Find and generalise the last digit of the expression above to \(x\) where \(x\) is a whole number.

Note by Joel Yip
2 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

What do you mean? Is \(x\) supposed to be a fixed integer?

Or is the last digit of that expression independent of \(x\)? What if \(x\) is a real number?

Calvin Lin Staff - 2 years, 7 months ago

Log in to reply

20x

Hamza Iqbal - 2 years, 7 months ago

Log in to reply

When \sqrt{10x-1} is rational,the last digit is always 2. Also ,x must be even. This would be because the of 10x+1 always ends with a 1, Some basic number theory says that sqrt(10x+1) ends with a 9 or 1. If 9,the expression is equivalent to (9+1)^(10x+1)-(9-1)^(10x+1) =0-8^(2x+1) =2 (mod 10) If 1, (1+1)^(10x+1)-(1-1)^(10x+1) =2^(2x+1)-0 =2-0 =2 mod(10). Hope this answers your question.

Timothy Wan - 2 years, 7 months ago

Log in to reply

Not true, The last digit of \({ \left( \sqrt { 91 } +1 \right) }^{ 91 }-{ \left( \sqrt { 91 } -1 \right) }^{ 91 }\) is 8

Joel Yip - 2 years, 7 months ago

Log in to reply

I did state that the above is true if \[\sqrt{10x+1}\]is rational. But now you mentioned it,I will try to generalize the cases. Thanks anyway.

Timothy Wan - 2 years, 7 months ago

Log in to reply

..

Joel Yip - 2 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...