New user? Sign up

Existing user? Log in

can anyone tell me how to solve this.

Note by Daniel Kua 4 years, 6 months ago

$</code> ... <code>$</code>...<code>."> Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

Which one do you mean I or II :

$75^{40} = 9^{20 \times 5^{x}} . . . . . I$

$75^{40} = 9^{20} \times 5^{x} . . . . .II$

Log in to reply

no.2

how do u type multiple again? tell me pls.

You can see how to type in math formatting by click on "formatting guide" at the bottom-left corner of your comment box.

To type multiple, just type " \times " in math format (remember, in math format! See how to start a math format in the formatting guide.

The more easy ways to know the format of symbols, just point your cursor at the symbols, the format then will appears.

the 2nd one

Sorry for the late response,

$75^{40} = 9^{20} \times 5^{x}$

$75^{40} = (3^2)^{20} \times 5^{x}$

$75^{40} = 3^{40} \times 5^{x}$

$\frac{75^{40}}{3^{40}} = 5^{x}$

$(\frac{75}{3})^{40} = 5^{x}$

$25^{40} = 5^{x}$

$(5^2)^{40} = 5^{x}$

$5^{80} = 5^{x}$

$\boxed{x = 80}$

$75^{40}= (3*25)^{40}$

$= 3^{40} * 25^{40}$

$= 3^{2*20} * (5^2)^{40}$

$= (3^2)^{20} * 5^{2*40}$

$= 9^{20}*5^{80}$

Therefore $x = 80$. I only used 2 formulae, $(ab)^n = a^n * b^n$ and $(a^n)^m = a^{m*n}$

Also, to write all the signs, read this

@Siddhartha Srivastava – 3^40 is not equal to 3^20+2

@Daniel Kua – Of course not. Look at this exponent's formulas :

$a^x \times a^y = a^{x+y}$

$(a^x)^y = a^{xy}$

So,

$3^{40} \neq 3^{20+2}$ but

$3^{40} = 3^{2 \times 20} = (3^2)^{20}$

Got it?

@Daniel Kua – Its $3^{20 \times 2}$. I used the $*$ symbol.

x=80

X=80

Problem Loading...

Note Loading...

Set Loading...

$</code> ... <code>$</code>...<code>."> Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in $</span> ... <span>$ or $</span> ... <span>$ to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWhich one do you mean I or II :

$75^{40} = 9^{20 \times 5^{x}} . . . . . I$

$75^{40} = 9^{20} \times 5^{x} . . . . .II$

Log in to reply

no.2

Log in to reply

how do u type multiple again? tell me pls.

Log in to reply

You can see how to type in math formatting by click on "formatting guide" at the bottom-left corner of your comment box.

To type multiple, just type " \times " in math format (remember, in math format! See how to start a math format in the formatting guide.

The more easy ways to know the format of symbols, just point your cursor at the symbols, the format then will appears.

Log in to reply

the 2nd one

Log in to reply

Sorry for the late response,

$75^{40} = 9^{20} \times 5^{x}$

$75^{40} = (3^2)^{20} \times 5^{x}$

$75^{40} = 3^{40} \times 5^{x}$

$\frac{75^{40}}{3^{40}} = 5^{x}$

$(\frac{75}{3})^{40} = 5^{x}$

$25^{40} = 5^{x}$

$(5^2)^{40} = 5^{x}$

$5^{80} = 5^{x}$

$\boxed{x = 80}$

Log in to reply

$75^{40}= (3*25)^{40}$

$= 3^{40} * 25^{40}$

$= 3^{2*20} * (5^2)^{40}$

$= (3^2)^{20} * 5^{2*40}$

$= 9^{20}*5^{80}$

Therefore $x = 80$. I only used 2 formulae, $(ab)^n = a^n * b^n$ and $(a^n)^m = a^{m*n}$

Also, to write all the signs, read this

Log in to reply

Log in to reply

$a^x \times a^y = a^{x+y}$

$(a^x)^y = a^{xy}$

So,

$3^{40} \neq 3^{20+2}$ but

$3^{40} = 3^{2 \times 20} = (3^2)^{20}$

Got it?

Log in to reply

$3^{20 \times 2}$. I used the $*$ symbol.

ItsLog in to reply

x=80

Log in to reply

X=80

Log in to reply