×

# A Binomial Coefficient Question

Find the remainder when $${1234 \choose 2} + {1234 \choose 6} + {1234 \choose 10} \ldots + {1234 \choose 1230} + {1234 \choose 1234}$$ is divided by $$30$$.

Note by Anqi Li
4 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Let $$N$$ denote that expression, because $${n \choose k } = {n \choose n-k}$$

$$N = {1234 \choose 1232 } + {1234 \choose 1228 } + {1234 \choose 1224 } + \ldots + {1234 \choose 4 } + {1234 \choose 0 }$$

Add the "original" $$N$$ and the above equation

$$2N = {1234 \choose 0 } + {1234 \choose 2 } + {1234 \choose 4 } + {1234 \choose 6 } + \ldots + {1234 \choose 1230 } + {1234 \choose 1232 } + {1234 \choose 1234 }$$

Because $$\displaystyle \sum_{k=0}^n {2n \choose 2k} = 2^{2n-1}$$

$$2N = 2^{1233}$$

$$N = 2^{1232}$$

$$N \pmod {2} \equiv 0$$

$$N \pmod {3} \equiv (-1)^{1232} \equiv 1$$

$$N \pmod {5} \equiv 2^{ 1232 \space \bmod {4} } \equiv 2^0 \equiv 1$$, by Fermat's Little Theorem

Because $$2,3,5$$ are pairwise coprime, we can find $$N$$ modulo $$30$$ by Chinese Remainder Theorem, the answer is $$\boxed{16}$$

- 4 years, 2 months ago

Do you mean $$\displaystyle\sum_{k=0}^{n} \dbinom {2n}{2k} = 2^{2n-1}$$?

- 4 years, 2 months ago

Fixed......... THANKS

- 4 years, 2 months ago