New user? Sign up

Existing user? Log in

Find the remainder when \( {1234 \choose 2} + {1234 \choose 6} + {1234 \choose 10} \ldots + {1234 \choose 1230} + {1234 \choose 1234} \) is divided by \( 30 \).

Note by Anqi Li 4 years, 6 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

Let \(N \) denote that expression, because \( {n \choose k } = {n \choose n-k} \)

\(N = {1234 \choose 1232 } + {1234 \choose 1228 } + {1234 \choose 1224 } + \ldots + {1234 \choose 4 } + {1234 \choose 0 } \)

Add the "original" \(N\) and the above equation

\( 2N = {1234 \choose 0 } + {1234 \choose 2 } + {1234 \choose 4 } + {1234 \choose 6 } + \ldots + {1234 \choose 1230 } + {1234 \choose 1232 } + {1234 \choose 1234 } \)

Because \( \displaystyle \sum_{k=0}^n {2n \choose 2k} = 2^{2n-1} \)

\( 2N = 2^{1233} \)

\( N = 2^{1232} \)

\( N \pmod {2} \equiv 0 \)

\( N \pmod {3} \equiv (-1)^{1232} \equiv 1 \)

\( N \pmod {5} \equiv 2^{ 1232 \space \bmod {4} } \equiv 2^0 \equiv 1 \), by Fermat's Little Theorem

Because \(2,3,5\) are pairwise coprime, we can find \(N \) modulo \(30\) by Chinese Remainder Theorem, the answer is \(\boxed{16} \)

Log in to reply

Do you mean \( \displaystyle\sum_{k=0}^{n} \dbinom {2n}{2k} = 2^{2n-1} \)?

Fixed......... THANKS

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet \(N \) denote that expression, because \( {n \choose k } = {n \choose n-k} \)

\(N = {1234 \choose 1232 } + {1234 \choose 1228 } + {1234 \choose 1224 } + \ldots + {1234 \choose 4 } + {1234 \choose 0 } \)

Add the "original" \(N\) and the above equation

\( 2N = {1234 \choose 0 } + {1234 \choose 2 } + {1234 \choose 4 } + {1234 \choose 6 } + \ldots + {1234 \choose 1230 } + {1234 \choose 1232 } + {1234 \choose 1234 } \)

Because \( \displaystyle \sum_{k=0}^n {2n \choose 2k} = 2^{2n-1} \)

\( 2N = 2^{1233} \)

\( N = 2^{1232} \)

\( N \pmod {2} \equiv 0 \)

\( N \pmod {3} \equiv (-1)^{1232} \equiv 1 \)

\( N \pmod {5} \equiv 2^{ 1232 \space \bmod {4} } \equiv 2^0 \equiv 1 \), by Fermat's Little Theorem

Because \(2,3,5\) are pairwise coprime, we can find \(N \) modulo \(30\) by Chinese Remainder Theorem, the answer is \(\boxed{16} \)

Log in to reply

Do you mean \( \displaystyle\sum_{k=0}^{n} \dbinom {2n}{2k} = 2^{2n-1} \)?

Log in to reply

Fixed......... THANKS

Log in to reply