While I was doodling, I discovered something interesting regarding drawing a walk in the coordinate plane.

First, I selected 4 random lattice points as the vertices of a quadrilateral. Then, I started on a certain vertex. Next, I drew a line segment to the next vertex (going clockwise), then continued the line segment to have the extension be equal in length to the original line segment. Next, I did this again with the next vertex, drawing from where I was to the vertex, then drawing another line segment equal in length to my previous segment.

I noticed that whenever my original quadrilateral was a parallelogram, my path was bounded. However, if it wasn't a parallelogram, then my path became unbounded, growing indefinitely.

I tried the experiment again, except instead I chose a random point on the plane to start. Same results.

What do you guys think? Can you prove this conjecture? I managed to link this with another similar problem that is easy to prove. Can you find that problem?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestCan you add a picture to go with your description? That will make following your instructions much easier.

Even an example in the case of a parallelogram could shed some light immediately as to why it would be bounded.

Log in to reply

It will be good if you post a picture of this as well :p .....

Log in to reply