A different way to find the highest power

For a prime \(p>n\) for \(n\in\mathbb{N}\), you've probably seen this formula somewhere for the highest power of \(p\) dividing \(n!\):

\[\displaystyle \sum _{ i\ge 1 }^{ \quad }{ \left\lfloor \frac { n }{ { p }^{ i } } \right\rfloor } \]

In fact, there's a much more surprising formula (let's face it, this one isn't that hard to derive): suppose \(n={ ({ b }_{ 0 }{ b }_{ 1 }{ b }_{ 2 }...{ b }_{ r }) }_{ p }\), or

\[n={ b }_{ 0 }{ p }^{ r }+{ b }_{ 1 }{ p }^{ r-1 }...+{ b }_{ r }\]

and let \(\delta (n)\) be the digit sum of \(n\) base \(p\). Then the highest power of \(p\) dividing \(n!\) is

\[\displaystyle \frac { n-\delta (n) }{ p-1 } \]

Wow. That's a heck of a lot shorter, isn't it? But why does this even work? Let's prove it below...

\[\frac { n-\delta (n) }{ p-1 } = \frac { n-({ b }_{ 0 }+{ b }_{ 1 }+...{ b }_{ r }) }{ p-1 } =\frac { \displaystyle \sum _{ k=0 }^{ r }{ { b }_{ k }({ p }^{ r-k }-1) } }{ p-1 } \]

Then factor \({p}^{r-k}-1\) (by difference of nth powers) and cancel the \(p-1\) in the denominator. This results in

\[\displaystyle \sum _{ k=0 }^{ r }{ { b }_{ k }\left( 1+p+{ p }^{ 2 }...{ p }^{ r-k-1 } \right) } = b_{r-1}+(b_{r-2}p+b_{r-2}) \dots\]

Now write this sum out - term by term - in columns (not a typo, I mean columns - there's a trick here):

\[\displaystyle \sum _{ k=0 }^{ r }{ { b }_{ k }\left( \sum _{ j=0 }^{ r-k-1 }{ { p }^{ j } } \right) } =({ b }_{ r-1 }+{ b }_{ r-2 }p+\dots+ { b }_{ 0 }{ p }^{ r-1 })\] \[\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+(b_{r-2}+ \dots + b_0 p^{r-2})\] \[\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\vdots\] \[\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad +b_0\]

Okay, while each term was written by column before, let's look at the rows now. In fact, each row is equal to a term in this familiar expression:

\[\displaystyle \sum _{ k=1}^{ r }{ \left\lfloor \frac { n }{ { p }^{ k } } \right\rfloor } \]

because each time you divide by \(p\) again one term in the base \(p\) expansion vanishes (that associated with \(p^0\)) and the others go down an exponent of \(p\). So, we have

\[\displaystyle \sum _{ k=1}^{ r }{ \left\lfloor \frac { n }{ { p }^{ k } } \right\rfloor } = \displaystyle \frac { n-\delta (n) }{ p-1 } \]

Note by Dylan Pentland
2 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Wow! Nice, let me see whether I can apply to this question.

Pi Han Goh - 2 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...