This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.

When posting on Brilliant:

Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .

Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.

Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

Markdown

Appears as

*italics* or _italics_

italics

**bold** or __bold__

bold

- bulleted - list

bulleted

list

1. numbered 2. list

numbered

list

Note: you must add a full line of space before and after lists for them to show up correctly

when you post something there is an option which says'FORMATTING GUIDE' click on that and than
below it you'll see an option of 'EASY MATH EDITOR' click on that and than it will take to an app through which you can write like this.(use google chrome)

Hey buddy listen up! This sum is quite an easy one but your solution has made it far too complex. Simply take y=x^x^x and then take log on both sides then simply differentiate and voila! You will get your result in a jiffy by applying the product rule.

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest$let\quad \\ \quad { x }^{ { x }^{ x } }=y\quad \quad AND\quad { x }^{ x }=z\\ now\quad let\quad us\quad find\quad the\quad value\quad of\quad \frac { dz }{ dx\\ } \\ xlogx=logz\\ \frac { d }{ dx } xlogx=\frac { d }{ dx } logz\\ applying\quad the\quad product\quad rule\\ \frac { x }{ x } \quad +logx(1)=\frac { \frac { dz }{ dx } }{ z } \\ { x }^{ x }(1+logx)=\frac { dz }{ dx } \quad .........1.\\ \\ now\quad let\quad us\quad find\quad the\quad value\quad of\quad \frac { dy }{ dx } \\ { x }^{ x }logx=logy\\ \frac { d }{ dx } { x }^{ x }logx=\frac { d }{ dx } logy\\ applying\quad he\quad product\quad rule\\ \frac { { x }^{ x } }{ x } \quad +\quad logx(\frac { d }{ dx } { x }^{ x })=\frac { 1 }{ y } (\frac { dy }{ dx } )\\ \frac { { x }^{ x } }{ x } +\quad logx({ x }^{ x })(1\quad +\quad logx)=\frac { 1 }{ y } (\frac { dy }{ dx } )\\ \\ y(\frac { { x }^{ x } }{ x } \quad +\quad logx({ x }^{ x })(1\quad +\quad logx))=\frac { dy }{ dx } \\ ({ x }^{ { x }^{ x } })({ x }^{ x })(\frac { 1 }{ x } \quad +\quad logx(1\quad +\quad logx)=\frac { dy }{ dx } \\$

Log in to reply

How will I post my answer in this format? Please help me. I can't post my solution.

Log in to reply

when you post something there is an option which says'FORMATTING GUIDE' click on that and than below it you'll see an option of 'EASY MATH EDITOR' click on that and than it will take to an app through which you can write like this.(use google chrome)

Log in to reply

Log in to reply

Log in to reply

@Pranjal Jain @Calvin Lin @Chew-Seong Cheong @Yan Yau Cheng @math man @Krishna Sharma @Krishna Ar @abdulrahman khaled @Mehul Chaturvedi Upload solution

Log in to reply

But I have a solution. So I'm posting a new note in my profile.

Log in to reply

Take log and differentiate and for x^x again take log and differentiate

Log in to reply

Hey buddy listen up! This sum is quite an easy one but your solution has made it far too complex. Simply take y=x^x^x and then take log on both sides then simply differentiate and voila! You will get your result in a jiffy by applying the product rule.

Log in to reply