A limit

$$lim_{n \rightarrow \infty} \sqrt[n]{sin(\frac{n}{3^n})}$$ , while n is a natural number

theory : if $$X_n$$ was a positive Numerical consecutive then the limit $$lim_{n \rightarrow \infty} \sqrt[n]{X_n} =\frac{X_{n+1}}{X_n}$$

so the above limit can be yielded by $$lim_{n \rightarrow \infty} \frac{sin(\frac{n+1}{3^{n+1}})}{sin(\frac{n}{3^n})}$$

$$lim_{n \rightarrow \infty} \frac{sin(\frac{n}{3*3^n} +\frac{1}{3*3^n})}{ sin(\frac{n}{3^n})}$$

$$lim_{n \rightarrow \infty} \frac{sin(\frac{n}{3*3^n})cos(\frac{1}{3*3^n}) +cos(\frac{n}{3*3^n})sin(\frac{1}{3*3^n}) }{ sin(\frac{n}{3^n})}$$

$$lim_{n \rightarrow \infty} \frac{sin(\frac{n}{3*3^n})cos(\frac{1}{3*3^n})}{sin(\frac{n}{3^n})}+\frac{cos(\frac{n}{3*3^n})sin(\frac{1}{3*3^n}) }{ sin(\frac{n}{3^n})}$$

$$lim_{n \rightarrow \infty} \frac{sin(\frac{n}{3*3^n})cos(\frac{1}{3*3^n})}{sin(\frac{n}{3^n})}+0$$

assume $$\frac{n}{3^n} =u$$ ,thus

$$lim_{u \rightarrow 0}\frac{sin(\frac{1}{3}u)*1}{sin(u)}=\frac{1}{3}$$

this note is for a question by almikdad ismailto show off at his mates lol.

Note by Jafar Badour
2 years, 11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$