Let \(a_1,a_2,...a_{100}\) be real numbers each less than \(1\),which satisfy, \[a_1+a_2+.....a_{100} > 1\]

\(1.\) Let \(n_0\) be the smallest integer \(n\) such that \[a_1+a_2+.....a_n > 1\] Show that the sums \(a_{n_0},a_{n_0}+a_{n_0-1} ,......,a_{n_0}+.....+a_1\) are positive

\(2.\)Show that there exists two integers \(p\) and \(q\),\(p < q\),such that the numbers \[a_q,a_q+a_{q-1},....,a_q+.....+a_p\] and \[a_p,a_p+a_{p+1},....,a_p+.....+a_q\]

are all positive

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestFor 1., we prove by contradiction. Suppose one the sums, WLOG \( (a_{n_0} + \dots + a_{n_0 - x}) \) is not positive., i.e.\( (\leq 0) \)

Now, As, \( a_1 + a_2 + \dots + a_{n_0} > 1 \)

\( \Rightarrow (a_1 + a_2 + \dots + a_{n_0 - (x+1)}) + ( a_{n_0 - x} + \dots + a_{n_0}) > 1 \)

\( \Rightarrow (a_1 + a_2 + \dots + a_{n_0 - (x+1)}) > 1 - ( a_{n_0 - x} + \dots + a_{n_0}) \)

\( \Rightarrow (a_1 + a_2 + \dots + a_{n_0 - (x+1)}) > 1 \) (Since \( ( a_{n_0 - x} + \dots + a_{n_0}) \) is not positive)

But this contradicts the fact \( a_{n_0} \) is the smallest n for which \( a_1 + a_2 + \dots + a_n > 1 \).

Therefore our supposition is wrong and no sum is not positive, i.e. all the sums are positive

Log in to reply