A periodic sequence

The sequence given by \(x_0 = a\), \(x_1 = b\) and

\[x_{n + 1} = \frac {1}{2} (x_{n - 1} + \frac {1}{x_n})\]

is periodic. Prove that \(ab = 1\).

Note by Sharky Kesa
4 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Multiply both sides by \(x_n\) for the recursion and get: \(x_{n+1}x_{n}=\frac {1}{2}(x_nx_{n-1}+1)\)

Notice that if we let \(y_n=x_{n}x_{n-1}\), then the recursion becomes: \(y_{n+1}=\frac {1}{2}(y_n+1)\).

It's clear that If \({x_n}\) is periodic, then so is \({y_n}\).

If we let the initial value for sequence \({y_n}\) be \(y_1=ab=c\), then the closed formula for the sequence is: \(y_n=\frac {c-1}{2^{n-1}}+1\). If \(c\) isn't 1, then the sequence either monotonically increases(when \(c<1\))) or decreases (when \(c>1\)) and eventually converges to \(1\). Hence it must be true for \(c=ab=1\).

Xuming Liang - 3 years, 12 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...