A Probability Problem: A Little Help Would Be Good

Someone gave me this problem.

If \(x\) and \(y\) are positive reals such that

\(x+y=2n\) [\(n\) is another positive real number],

what is the probability that \(xy>\frac{3}{4}n^2\)?

These kinds of problems are kind of my weak point. So I would appreciate it if you shared your thought process along with your solution.

Thanks in advance!

Note by Mursalin Habib
4 years, 7 months ago

No vote yet
4 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Clearly \(y\) is a dependant variable; you just want to identify the range of \(x\) values that do what you want. Thus, with \(y=2n-x\) you are interested in \(x\) such that \[ \begin{array}{rcl} x(2n-x) & > & \tfrac34n^2 \\ x^2 - 2nx + \tfrac34n^2 & < & 0 \\ (x - n)^2 & < & \tfrac14n^2 \\ |x-n| & < & \tfrac12n \end{array} \] and so you want \(\tfrac12n < x < \tfrac32n\). What you haven't told us is the probability distribution that \(x\) comes from. If \(x\) is uniformly distributed between \(0\) and \(2n\), the probability is \(\tfrac12\).

Mark Hennings - 4 years, 7 months ago

Log in to reply

Thanks! That was really helpful!

Mursalin Habib - 4 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...