Waste less time on Facebook — follow Brilliant.
×

A problem for someone who has \(g_{64}\) free time

How many ways are there to obtain at least one straight flush with 13 cards?

I've been searching for an answer for this curious inquiry, but to no avail. I've also tried solving using inclusion-exclusion, but it has more cases than the number of possible straight flushes. Can someone solve this using some technique, or find an answer using Google? I've tried everything, but to no avail.

An olympiad approach would make an exciting problem. Inclusion-exclusion is veeery very long. Google - I've tried. But maybe you'll have better luck than me?

Clarification: Having a straight flush means having at least five cards with consecutive ranks and the same suit from a standard deck of cards.

Note by Manuel Kahayon
1 year ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(\infty\)

Manuel Kahayon - 11 months, 4 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...