# A question about the omega functions $$\Omega (n)$$ and $$\omega (n)$$

Given a random positive number $$n$$, is there a way to determine the number of prime factors of $$n$$ without factorizing $$n$$?

There are several useful primality tests for a given number, such as the Miller-Rabin primality test, but is there a test to determine whether number is a semiprime or a 3-almost prime, etc.? Put another way, how can one find either the total number of prime factors (counted with multiplicity) or the number of distinct prime factors without factoring $$n$$?

After some digging in Wikipedia, I found that these two properties, the number of prime factors to muliplicity and number of distinct prime factors, could be described, respectively, by the functions $$\Omega (n)$$ and $$\omega (n)$$.

Thus, we have another way to phrase the question: "Is there a way to calculate either of the omega functions for $$n$$ without knowing any of the factors of $$n$$?"

There wasn't much information on those functions at Wikipedia though, and I couldn't parse the information in the notes for the related OEIS sequences.

Here are some links that may be relevant: Prime factor; Prime power decomposition; A001222, The number of prime factors counted with multiplicity, $$\Omega (n)$$ ; A001221, The number of distinct primes dividing n, $$\omega (n)$$

Note by Evan Robinson
3 years, 11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$