Given that \( w, x, y, z \) take on values \( 0 \) and \( 1 \) with equal probability, what is the probability that \( w+x+y+z \) is odd?

Which of the following arguments is correct?

Furthermore, can you generalize this result?

**Argument 1:**

If all 4 numbers are even, the sum is even.

If 3 numbers are even, the sum is odd.

If 2 numbers are even, the sum is even.

If 1 number is even, the sum is odd.

If 0 numbers are even, the sum is even.

In 2 of the 5 cases, the sum is odd. Hence, \( w + x +y + z \) is odd with probability \( \frac{ 2}{5} \).

**Argument 2:**

\( w + x + y + z \) is either odd or even.

In 1 of the 2 cases, the sum is odd. Hence, \( w + x +y + z \) is odd with probability \( \frac{ 1}{2} \).

**Argument 3:**

By listing out all the \( 2^4 \) cases, we find that there are \( { 4 \choose 0} + { 4 \choose 2} + { 4 \choose 4 } = 8 \) cases with an even sum, and \( { 4 \choose 1} + {4 \choose 3} = 8\) cases with an odd sum.

Hence, \( w + x +y + z \) is odd with probability \( \frac{ 1}{2} \).

Context: In a recent problem, Argument 1 was given, and many people agreed with it.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThe problem with the first argument is that the probabilities of each of the cases is different. In reality, the first case has one way, the second has 4 ways, the third has 6 ways, the fourth has 4 ways, and the last one has only 1 way. Thus the actual probability is \(\dfrac{4+4}{1+4+6+4+1}=\dfrac{1}{2}\).

Log in to reply

I disagree with Argument 1:

In case 1 there is only 1 outcome to make an even sum.

In case 2 there are 4 outcomes that make an odd sum

In case 3 there are 6 outcomes that make an even sum

In case 4 there are 4 outcomes that make an odd sum

In case 5 there is only 1 outcome to make an even sum.

Thus out of the 16 equally likely outcomes 8 will yield an odd sum and 8 will yield an even sum.

Therefore the probability that w + x + y + z is odd is 1/2.

Log in to reply

Reminds me of Bertrand paradox, where three ways of choosing a seemingly the same uniformly random chord on a circle give different probability distributions (which means they are different).

Log in to reply

I am not very sure if these two are similar indeed. The problem stated above seems to have objective solution and other two are simply counting errors.

Log in to reply

They are not similar, yes. It's just the fact that there are three solutions arriving at different answers immediately reminded me to that.

Log in to reply

Well, this is how i solve this problem.

Assume that we choose w, x, y first.

w + x + y = A.

Doesn't matter whether A is odd or even. z will be the one that decide whether the sum of w, x, y, z (assume w +x+y+z= B) is odd or even

=> With that the possibility for B to be odd = 50%

=> Argument 1: Wrong

Argument 2: Correct (but lack at explaining)

Argument 3: Correct

Log in to reply

While argument 2 produces the correct numerical answer, the logic presented is incorrect.

See @SAMARTH M.O. Comment.

Log in to reply

Argument 3 is arguably the right one. Arguments 1 and 2 assume that their mentioned respective events are equally likely.

Log in to reply

Argument 1 is wrong because it assumes they all happen with equal probability, which they don't.

Log in to reply

Argument 1 is incorrect because each case is not equally likely. Argument 2 gives the correct answer but for the wrong reason. Consider the probability of drawing the Ace of spades from a deck of cards. The card drawn is either the ace or it is not. One out of two cases is favourable hence 1/2. (?) Argument 3 would be correct if it was asserted that each case was equally probable. Which of course it is. J

Log in to reply

Great :)

Log in to reply

Total number of cases = 2

22*2 Even cases are If number of ONEs is 2 or 4, So Favourable number of cases : 4P2 + 4P4 = 6 + 1 = 7 So Probability for odd is (16 - 7)/16 = 9/16Log in to reply

The answer is 1/2.

When dealing with even cases, you forgot that 0 is an even number.

Log in to reply

The first arguement is wrong as each case doesnot have equal probability .. The second solution (though gives right answer ) is an insufficient one. ARGUEMENT 3is descent

Log in to reply

The second solution doesn't give a correct argument. The point isn't to "get to the correct answer". The point is to "substantiate your argument".

Log in to reply

1

Log in to reply

An even easier argument which is easily adapter to be generalisation for the number of: picking the first 3 numbers randomly, you'll find either an even or an uneven number. The last term will change it to either even or uneven, with an equal chance of either.

This will generalise to any number of variables easily, and also adapt to the odds of the result being k (mod n) if your variables can have values 1, 2, ... , n.

One problem it can't help with is: if the variables are binary, what are the odds of the result being a multiple of k (for a k greater than 2).

Log in to reply

We have 2^{4} case. Odd sum is 2.\frac{4!}{3!}=2^{3} case. There for sum is odd with probability \frac{1}{2}

Log in to reply

let a(n) = P(Bin(n,0.5) is even), then a(n+1) = 0.5

a(n) + (1-0.5)(1-a(n)) = 0.5Log in to reply

Obviously universal space= 2^4 Sample space= 4C0+ 4C2+ 4C4= 8 So probability= 8/16 =1/2

Log in to reply

2

Log in to reply

1\2

Log in to reply

Argument 3 is perfect.

Log in to reply

.5

Log in to reply

argument 3 feels more logical

Log in to reply

The last argument is correct. In general for n numbers the probability is \(\frac {{2}^{n-1}}{{2}^n} = \frac {1}{2}\)

Log in to reply

Was this problem perhaps my problem All That Glitters Is Gold?

Log in to reply

No. I like your problem, which highlights a common mistake made by those who are first introduced to probability.

The problem that I was referencing had a similar title to my note. It has since been deleted.

Log in to reply

Dude Calvin, I just found this. You didn't even tag me in it! But thanks, it's still awesome! :D

Log in to reply

1

Log in to reply

now since every single variable counts and is equally important we should be going with the the third one .. ARGUMENT 3 is correct .... nearly similar way to solve is .. there are two possibilities:-

1.) - three variables are 1

2.)- only one variable is 1 .. both ways we get odd

hence- 4C3[ any three numbers]

(1/2)^4[the probability of getting 1 is 1/2 and zero is also the same AND we need to get 1 in three cases AS WELL AS 0 in the other case] => 4C3 * (1/2)^4 +4C1[only one variable](1/2)^4 AND HENCE4C3 * (1/2)^4 + 4C1 * (1/2)^4 = 1/2 ..

Log in to reply

The issue with the first argument is that of frequency distribution

Log in to reply

10

Log in to reply