# A step towards defining the path of electron

Hi learners,

As the famous Heisenberg's uncertainty principle declares the inability of accurately measuring the properties of a quantum system, hence we can not determine the path of electron in the atom. The main aim of my discussion is to present you guys, a hypothesized procedure and an attempt to approximately find out the path of an electron in the atom. In a nutshell this is an ambitious project.

Note :- I am no scientist, professor or teacher, I am just 15. Neither I have done a course or degree in quantum mechanics . So please do correct me if I am wrong in any line or point. Your valuable comments and suggestions will be entertained. So let's begin....

Consider a hypothetical isolated atom of hydrogen (though we can never isolate the atom) having an electron in its 1s-subshell . As the orbital is included here , we'll talk of only probability. We may take different quantum states of this particular atom as : $\left| {{\Psi _1}} \right\rangle ,\left| {{\Psi _2}} \right\rangle ,\left| {{\Psi _3}} \right\rangle , \ldots \ldots \ldots \ldots ,\left| {{\Psi _n}} \right\rangle$ These quantum states of electron contain their different positions and momenta, As the electron can have many positions and momenta at the same time, hence we are at a risk of double counting. In order to avoid this, we will collapse the wavefunction of their individual quantum states to obtain one position and one momentum . Finally just by taking the summation of the collapsed wavefunction of the different quantum states obtaining 'n' positions and 'n' momentum , discarding 'n' momenta and considering 'n' positions we'll get the approx. path of the electron in the hydrogen atom.

                                                                                  OR


Another SUPPOSED way of doing this is to let that the individual quantum state of the electron is the probability of finding it in a particular region of the 1s - electron cloud (which is in a superposition of many positions and momenta). This means that a particular region of the 1s - electron cloud (the region in which the electron is likely to be found is called the electron cloud) the electron of the quantum state $\left| {{\Psi _1}} \right\rangle$ is found. Similarly, the electron may be found in the $\left| {{\Psi _2}} \right\rangle ,\left| {{\Psi _3}} \right\rangle , \ldots \ldots \ldots \ldots ,\left| {{\Psi _n}} \right\rangle$ quantum states of the corresponding regions in the electron cloud of the 1s - subshell. Next, as the wavefunction of the corresponding quantum states change with time and its distance from the nucleus (because the motion of is not fixed hence its distance should change). then by partially differentiating the wavefunction w.r.t. time and distance from the nucleus (let it be 'x' ) (though I haven't that much knowledge of partial differentials and their integration). It MAYBE like this :-

$\frac{{\partial {\Psi _1}}}{{\partial ({x_{1,}}{t_1})}} = {1^{st}}{\text{ position and }}{{\text{1}}^{st}}{\text{ momentum}}$

$\frac{{\partial {\Psi _2}}}{{\partial ({x_{2,}}{t_2})}} = {2^{nd}}{\text{ position and }}{{\text{2}}^{nd}}{\text{ momentum}}$

$\frac{{\partial {\Psi _3}}}{{\partial ({x_{3,}}{t_3})}} = {3^{rd}}{\text{ position and }}{{\text{3}}^{rd}}{\text{ momentum}}$

$\begin{gathered} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{gathered}$

$\frac{{\partial {\Psi _n}}}{{\partial ({x_{n,}}{t_n})}} = {n^{th}}{\text{ position and }}{{\text{n}}^{th}}{\text{ momentum}}$

And another important thing to be noted here is that these quantum states must be indeterminate ( hence can't be counted), hence we'll take the limit of the summation of derivative of wavefunction of each quantum quantum state and this, eventually, be the path of the electron .

$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{\partial {\Psi _i}}}{{\partial ({x_{i,}}{t_i})}}} \Rightarrow \int\limits_0^\infty {\partial ({x_{i,}}{t_i}) = } {\Psi _i}$

Most importantly, in order to avoid confusion regarding my assumption of the quantum states in the particular region of the so-called electron cloud, I will be showing a handwritten diagram as follows :

In the end, I would like to thank you all for reading my article . Have great day !

Note by Amit Panghal
6 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Hi @Amit Panghal, this is certainly full of interesting questions.

One immediate wonder I have is what you mean by this:

These quantum states of electron contain their different positions and momenta, As the electron can have many positions and momenta at the same time, hence we are at a risk of double counting. In order to avoid this, we will collapse the wavefunction of their individual quantum states to obtain one position and one momentum . Finally just by taking the summation of the collapsed wavefunction of the different quantum states obtaining 'n' positions and 'n' momentum , discarding 'n' momenta and considering 'n' positions we'll get the approx. path of the electron in the hydrogen atom.

It sounds like you feel we can simply collapse the wave function and get something that's an average path. I think most people would want to hear details of how you see that process happening. Usually, "collapsing" the wave function is simply settling into one of the many possible states. Using your notation, a quantum state might be a superposition along the lines of $$\ket{\psi} = \alpha_1\ket{\Psi_1} + \alpha_2\ket{\Psi_2} + \cdots + \alpha_n\ket{\Psi_n}.$$ And collapsing in the normal sense means it would adopt the state $$\ket{\Psi_i}$$ with probability $$\lvert\alpha_i\rvert^2.$$

In your second model, it sounds like you are proposing to split up the physical space encompassed by, for example, the 1s orbital, and assigning a different wave function to each subvolume? I am not sure I fully understand the idea here.

On the whole, I am curious how you got the idea for these theories?

Staff - 6 months ago

First of all, I wanna thank you for carefully analyzing and reading my very first article on Brilliant, @Josh Silverman. To begin with, I would like to answer your first question. The quantum states of the electron in hydrogen atom are taken because of the inability to precisely measure the position and momentum of the electron at any given instant of time. Hence, all the infinite position of the electron are individually included in these quantum states. It's like the some positions and momenta will be assigned to the first quantum state, some position and some momenta will be assigned to the second quantum state, similarly, the ${{\text{n}}^{th}}positions$ ${n^{th}}momenta$ will be assigned to the respective ${{\text{n}}^{th}}$ quantum state. Then by wavefunction collapse we'll select one position and one momentum from each state. That's my first idea. I have one question : What is the meaning of : $\left| \psi \right\rangle = {\alpha _1}\left| {{\Psi _1}} \right\rangle + {\alpha _2}\left| {{\Psi _2}} \right\rangle + \ldots \ldots \ldots + {\alpha _n}\left| {{\Psi _n}} \right\rangle$ . What do $\left| \Psi \right\rangle$ and $\left| \psi \right\rangle$ indicate. I think that the first denotes the individual quantum state and the other denotes the final superimposed state. Another question is that : What is $\alpha$ here and what is its multiplication with $\left| \Psi \right\rangle$ mean ? My another important question is that : How do you type these equations when I type any equation or symbol it appears in the center like you have typed all the equations in the line. It creates lot of discomfort for the reader, all the alpha-s and psi-s break the sentence and come in the center. How to get rid of this ?

Well, in my second idea, you got it right. I proposed that the each subvolume of the probability density of 1s-electron cloud would belong to each quantum state that contains various positions and momenta. Please check out my handwritten diagram.

From where I got this idea ?

Uh, It all started when I was 11. I read about General Relativity on wikipedia and saw an equation. I was astonished and wanted to know what the heck was that. The equation was ${G_{\mu \nu }}{\text{ + }}\Lambda {{\text{g}}_{\mu \nu }} = \frac{{8\pi G}}{{{c^4}}}{T_{\mu \nu }}$.Then my interest started to increase. Gradually I covered topics like QFT, string theory, structure of universe, my hypothesis on negative direction of time, cause of gravitation (quantum gravity), my questions on the basic foundations of quantum mechanics, extra dimensions and a little quantum retrocausality. I used to sit back and imagined about various theories and sometimes constructed my own. Whenever I got any idea I noted down that on a page and preserve it. That helped me for any future reference or in constructing new hypothesis.

I hope I've answered all your questions. Please do me a favour. Can you please tell all your friends, colleagues and relatives who are on Brilliant to read my article , so that they may post errors in the same ? I'll be grateful to you. I have many ideas regarding the above mentioned topics and going to post them soon. See you soon .

- 5 months, 3 weeks ago

That's a nice and interesting article. Good work Amit Panghal

- 6 months ago

Thank you very much for appreciation @Ram Mohith

- 5 months, 4 weeks ago

Great Curiosity. Keep it up :)

- 3 months, 1 week ago

Thank you very much sir for appreciation and kind words @Swapnil Das. In addition, I would like to request you to kindly read my other articles based on same ideas and hypothesis and give your valuable suggestions, corrections and reviews for the same.

- 3 months ago

• First of all , I am no Sir. My IQ won't be even half as yours.
I would like to ask you, how much mathematics do you know? Are you familiar with Analysis, Topology and Differential Geometry?

- 3 months ago

Honestly I don't know these topics. But the obsession for these hypothesis, some basic differential and integral calculus and my imagination which plays a key role to hypothesize such a articles, all these things keeps me going. And the motivating factors are the comments from people like you. I owe you , thanks !!!

Seeing your name I realized you can understand this : Jai Hind !!!

Going to post my article soon : On the invariance of the quantum field equations when the no. of spatial dimensions are increased to string theoretical limit.

- 2 months, 4 weeks ago

And please do me favour, could you please look for a dedicated scientific journal so that I can post my articles there ?

- 2 months, 4 weeks ago

Haha, first get a degree in Physics and learn the content rigorously. If you have time, look for the following sites:

• Arxiv.org

• Physical Reviews D

• Journal of Mathematical Physics.

- 2 months, 4 weeks ago

Thanks, but I know all these.

- 2 months, 3 weeks ago

Great.

- 2 months, 3 weeks ago