Casually I found a relation between the sides of any triangle but I don't know if it is a thing that you can obtain from other theorems or no

Given a triangle \(ABC\) I draw the height \(BD\) and I call \(W\) the value \(W=\frac{AB^2+BC^2-AC^2}{2}\) (that is equal to \(AB*BC*\cos(\hat{B})\) because of the law of cosines)

Then you can find (I've found this casually, but you can verify easily thanks to GeoGebra or similar programs) \(BC^2=DC*AC+W\) and on the other side \(AB^2=AD*AC+W\) but I can't explain myself these equalities, could you help me please? Thanks :)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestCheck out stewart's theorem.

Log in to reply

Let's put \[AB=c \\ BC=a \\ CA=b\]

Then the conjectured equations are equivalent to the following equations: \[a=b\cos C + c\cos B \\ c=a\cos B + b\cos A\]

But these equivalent equations are true for any arbitrary triangles (try proving this).

\[ \large Q. E. D. \]

Log in to reply

Yes I already know these equations, but I don't understand how they can be equivalent to the ones I wrote (I tried to put them equal but I can't reach a result)

Log in to reply

Notice that \(AD=c \cos A\) and \(CD=a \cos C\).

Log in to reply

Just as a hint, try drawing an altitude from one of the vertices to a side, and then use the two right triangles formed on either side.

Log in to reply