My math sir said that 'x' is the weight of an elephant and 'y' is the weight of an ant . both are different .Then he said He'll prove , x = y. This is how it goes ....

Let x+y = 2 ( a ) x=2(a)-y ..... (1) x-2(a)=(-y) ...(2)

Multiplying (1) and (2)., x(x-2a)= (2a-y)-y

x^2-2ax = y^2 - 2ay

x^2 - 2ax +a^2 = y^2 - 2ay +a^2 (Adding a^2 on both the sides )

(x-a)^2 = (y-a)^2 ( cancelling the squares .. )

x-a = y-a (cancelling a on both sides )

x=y !!!! (how is this possible ?)

i feel there is a mistake . How can we cancel off squares of DIFFERENT numbers x ,y when it is subtracted from a ?

What do you think guys ? give it a try !!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestIn a similar train of thought, read Proof that 0=1, where the error made is similar to what was done above.

Log in to reply

x-a = y-a is the trivial solution, x=y=a=0. The other solution to the square root is x-a = - (y-a), which reproduces the original case.

Log in to reply

Another way of putting it is that solutions to the equation \( (x-a)^2 = (y-a)^2\) is not the same as solutions to the equation \( (x-a = y-a \). In the former, we could have \( x-a = - (y-a) \), which is a solution in the latter.

Steps like this, in which you do not consider if the solution set has stayed the same, are a common mistake. You need to be careful with taking square roots, as it is a multi-value function, which accounts for the missing / extra solutions.

As another example, the number of integer solutions to \( \frac {1}{a} + \frac {1}{b} = 1 \) is not the same as the number of integer solutions to \( a + b = ab \).

Log in to reply

Yes, that was the more eloquent description of my response. Thanks!

Log in to reply

One more solution which i formed!!! Let 'e' be the weight of an elephant; 'a' be he weight of an ant;

such that e-a=d

then e=a+d

Multiplying both the sides by (e-a), we get:

e(e-a)=(a+d)(e-a)

=> e^2 - ae = ae - a^2 +de - ad

e^2 - ae - de = ae - a^2 - ad [Subtracting de from both sides]

e(e-a-d)=a(e-a-d) [taking e & a common]

====> e = a

Considering the fact that i know the fallacy in this solution and the law that has been broken!!!!!!

Log in to reply

thankya everyone !! Nice help !! :)

Log in to reply