Waste less time on Facebook — follow Brilliant.
×

A Trigonometric Geometric Sequence

Evaluate

\[ \sum_{k=1}^n \frac{1}{ \sin \left( \frac{ 2^k \pi} { 2^{n+1} -1} \right) }. \]

In particular, show that

\[ \frac{ 1}{ \sin ( \frac{2\pi}{7} )} + \frac{1}{ \sin( \frac { 4 \pi } { 7} )} = \frac{1}{ \sin ( \frac{\pi}{7} ) }. \]


This question is prompted by Daniel's Arc Co Tangent Sum.

Hint: Telescoping Series

Note by Calvin Lin
3 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Since

\(\csc 2x=\cot x-\cot 2x\)

the sum can be written as:

\(\displaystyle \sum_{k=1}^n \frac{1}{\sin\left(\frac{2^k\pi}{2^{n+1}-1}\right)}=\sum_{k=1}^n \left(\cot\left(\frac{2^{k-1}\pi}{2^{n+1}-1}\right)-\cot\left(\frac{2^k\pi}{2^{n+1}-1}\right) \right)\)

\(\displaystyle =\cot\left(\frac{\pi}{2^{n+1}-1}\right)-\cot\left(\frac{2^n\pi}{2^{n+1}-1}\right)=\cot\left(\frac{2^{n+1}\pi}{2^{n+1}-1}\right)-\cot\left(\frac{2^n\pi}{2^{n+1}-1}\right) \)

\(\displaystyle =-\csc\left(\frac{2^{n+1}\pi}{2^{n+1}-1}\right)=\boxed{\csc\left(\dfrac{\pi}{2^{n+1}-1}\right)}\)

For \(n=2\), it can be shown that:

\(\displaystyle \csc\left(\frac{2\pi}{7}\right)+\csc\left(\frac{4\pi}{7}\right)=\csc\left(\frac{\pi}{7}\right)\)

Pranav Arora - 3 years, 4 months ago

Log in to reply

Good job! I couldn't notice that!

Shaan Vaidya - 3 years, 4 months ago

Log in to reply

May be the part 2 of question is inspired from a question of IIT JEE 2011 . Am I correct ?

Anish Kelkar - 3 years, 4 months ago

Log in to reply

I came across it in a different context, where it was given as a specific case of the first result.

Calvin Lin Staff - 3 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...