Evaluate

\[ \sum_{k=1}^n \frac{1}{ \sin \left( \frac{ 2^k \pi} { 2^{n+1} -1} \right) }. \]

In particular, show that

\[ \frac{ 1}{ \sin ( \frac{2\pi}{7} )} + \frac{1}{ \sin( \frac { 4 \pi } { 7} )} = \frac{1}{ \sin ( \frac{\pi}{7} ) }. \]

This question is prompted by Daniel's Arc Co Tangent Sum.

**Hint:** Telescoping Series

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSince

\(\csc 2x=\cot x-\cot 2x\)

the sum can be written as:

\(\displaystyle \sum_{k=1}^n \frac{1}{\sin\left(\frac{2^k\pi}{2^{n+1}-1}\right)}=\sum_{k=1}^n \left(\cot\left(\frac{2^{k-1}\pi}{2^{n+1}-1}\right)-\cot\left(\frac{2^k\pi}{2^{n+1}-1}\right) \right)\)

\(\displaystyle =\cot\left(\frac{\pi}{2^{n+1}-1}\right)-\cot\left(\frac{2^n\pi}{2^{n+1}-1}\right)=\cot\left(\frac{2^{n+1}\pi}{2^{n+1}-1}\right)-\cot\left(\frac{2^n\pi}{2^{n+1}-1}\right) \)

\(\displaystyle =-\csc\left(\frac{2^{n+1}\pi}{2^{n+1}-1}\right)=\boxed{\csc\left(\dfrac{\pi}{2^{n+1}-1}\right)}\)

For \(n=2\), it can be shown that:

\(\displaystyle \csc\left(\frac{2\pi}{7}\right)+\csc\left(\frac{4\pi}{7}\right)=\csc\left(\frac{\pi}{7}\right)\)

Log in to reply

Good job! I couldn't notice that!

Log in to reply

May be the part 2 of question is inspired from a question of IIT JEE 2011 . Am I correct ?

Log in to reply

I came across it in a different context, where it was given as a specific case of the first result.

Log in to reply