This is a really hard functional equation by me:

Find all \(f: \mathbb{R} \rightarrow \mathbb{R}\) such that

\( f(x^2+f(y)^2)=xf(x)+yf(y) \) for all \(x,y \in \mathbb{R}\)

It looks quite simple but it's very difficult. Good luck if you try it!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestsimple observations reveals f(x)=x

Log in to reply

Find allmeansFind all and prove that you have all of themLog in to reply

Comment deleted 11 months ago

Log in to reply

yep sure but f(x)=x is the most appropriate one :P

Log in to reply

Some preliminary observations that might be useful. Will post more things as I keep progressing through.

Switch \(x\) and \(y\) around to get

\[f(x^2+f(y)^2)=x f(x)+y f(y) = f(y^2 + f(x)^2)\]

Substitute \(y=0\) to get

\[f(x^2+f(0)^2)=f(f(x)^2)\]

Log in to reply