Waste less time on Facebook — follow Brilliant.
×

A y-intercept of f(x)

A function \(f\) satisfies \(17f(x)+65f\left(\dfrac{2}{x}\right)=257\) and is continuous at \(x=0\). This function is known to have a y-intercept of \((0,\dfrac{a}{b})\), where \(a,b\) are relatively prime integers and \(b\ne 0\). What is \(a+b\)?

This was my failed submission to brilliant.org. I'm guessing that it doesn't really fit into any of the categories.

Note by Daniel Liu
4 years, 3 months ago

No vote yet
2 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(17f(x) + 65f(\frac{2}{x}) = 257\)

Replace \(x\) by \(\frac{2}{x}\),

\(17f(\frac{2}{x}) + 65 f(x) = 257\)

Solve to get \(f(x) = \frac{257}{82} \) always , Hence \(\frac{a}{b} = \frac{257}{82}\) \(\Rightarrow a + b = \fbox{339}\)

Jatin Yadav - 4 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...