I posted the problem about the equation $$x^{2x-1}=2$$ indicating to find a rational root. But that is to determine a rational root if it exists, or prove that the equation does not have a rational root. When solving the equation, we can assume that $$x=\frac{p}{q}$$ where $$p$$ and $$q$$ are integers, but that approach is considering that the root is a rational number.

Now in this note, I open a discussion about the problem to solve the equation without considering that the root is rational. Considering that the root is rational we can to find it, but, (assuming): what would happen for example, if a rational root does not exist? We can show that, but then, because of to assume that $$x=\frac{p}{q}$$ where $$p$$ and $$q$$ are integers did not work, how would we solve the equation?

That is to say, let's solve the equation algebraically without assume that $$x=\frac{p}{q}$$ where $$p$$ and $$q$$ are integers.

Note by Alexander Israel Flores Gutiérrez
1 year, 11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$