\[\displaystyle {\color{grey}{\sum_{n=0}^{\infty} \sum_{i=0}^n \frac{(2n)!!(2i+1)!!}{(2i)!!(2n+1)!! } (-b)^{i+n} = \frac{1}{(1+b)^2}\Bigg(\frac{1}{2\sqrt{b}} \ln \Big(\frac{1+\sqrt{b}}{1-\sqrt{b}} \Big) + \frac{b}{1-b} \Bigg)}} \]

Prove the above equality for \(0<b<1\).

Note: I got this fact after manipulating some integrals (i.e. proved it indirectly). I wonder how brilliant members would solve it ! Share your thoughts and hints if you don't have the complete answer.

\[\]

This note is a part of the set Sequences and Series Challenges.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestCARNAGE D:

Log in to reply

Wallis' is everything I can see!

Log in to reply

That's right, Wallis' is a way to start. But as you will see, it would be messy.I wonder if a simple solution can be found.

Log in to reply