Waste less time on Facebook — follow Brilliant.
×

Algbra Problem

p,q and r are three non-negative integers such that p + q + r = 10. The maximum value of pq + qr + pr + pqr is

Note by Sandeep Sharma
4 years, 1 month ago

No vote yet
0 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

First of all I would like to tell you that it is 'Algebra', Not 'Algbra' . For your question, I can give you a hint. You figure it out. we have to find maximum value of pq+qr+rp+pqr Divide and multiply this by pqr. So it becomes \(pqr(1/p+1/q+1/r+1)\).Now by applying AM-GM inequality, find the maximum of pqr, Then use AM-HM inequality and fin maximum value of \(1/p+1/q+1/r\) and that will lead you to the answer.

Dinesh Chavan - 4 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...