Algebra Question

Find all the solutions of 1/x + 1/y = 1/2013.

I have found 8 solutions but one of my friend claims that it has 14 solutions. He told me that there is a trick for this.

Do any of you know the trick or help me find 14 solutions?

Thanks everyone!

Note by Anoopam Mishra
5 years, 1 month ago

No vote yet
3 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\( \frac{1}{x} + \frac{1}{y}= \frac{1}{2013} \implies xy= 2013(x+y) \) This implies \( (x-2013)(y-2013) = xy - 2013(x+y) + 2013^2 = 2013^2 \).
Now note that \(2013^2= 3^2*11^2*61^2\). So number of divisors (positive and negative both included) of \(2013^2\) is \(2(2+1)(2+1)(2+1) = 54 \). For each divisor of \(2013^2\) we get 1 possible value of \( ((x-2013), (y-2013)) \). However note that \( (x, y)= (0, 0) \) satisfies \( xy= 2013(x+y) \), but not the original equation. So this case also has to be excluded. Thus from the total number of solutions we should subtract \(1\). That would give the total number of solutions= \( 54-1= 53 \).

Sreejato Bhattacharya - 5 years, 1 month ago

Log in to reply

There are actually 53 distinct integer ordered pairs \( (x,y) \) that satisfy the equation, not 52. You might want to double check your reasoning.

Hero P. - 5 years, 1 month ago

Log in to reply

Thank You!

Anoopam Mishra - 5 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...