Waste less time on Facebook — follow Brilliant.
×

Algebra (Thailand Math POSN 3rd round)

Write a full solution.

  1. Let \(P(x),Q(x)\) be real polynomials (real coefficients) with leading coefficient \(1\) or \(-1\) such that \(deg(P(x)) > deg(Q(x))\), find the number of solutions \((P(x),Q(x))\) to \(P(x)^{2}+Q(x)^{2} = x^{8}+1\). If possible, find each forms of solution.

  2. Let \(f(x) = \displaystyle \left(\frac{x^{5}}{5} + \frac{x^{4}}{2} + \frac{x^{3}}{3} - \frac{1}{30}\right) - \left\lfloor \frac{x^{5}}{5} + \frac{x^{4}}{2} + \frac{x^{3}}{3} - \frac{1}{30}\right\rfloor \). Find all possible values of \(f(n)\) where \(n\) is a positive integer. (Where \(\lfloor x \rfloor \) is a floor function, and defined to be \(\lfloor x \rfloor \leq x < \lfloor x \rfloor +1\))

  3. Find all real polynomials \(P(x)\) that satisfy \(P(a-b)+P(b-c)+P(c-a) = 2P(a+b+c)\) for all reals \(a,b,c\) that satisfy \(ab+bc+ca = 0\).

This note is part of Thailand Math POSN 3rd round 2015

Note by Samuraiwarm Tsunayoshi
2 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

ooooh, I like question 3 :) I tend to have a soft spot for such functional equations.

Calvin Lin Staff - 2 years, 8 months ago

Log in to reply

Sir try This and this \(\ddot\smile\)

Parth Lohomi - 2 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...