Waste less time on Facebook — follow Brilliant.
×

An adaptation of an AMC problem I was shared in class -- any ideas how to solve?

Problem 18 of the 2009 AMC 12B proposes the following question:

"Rachel and Robert run on a circular track. Rachel runs counterclockwise and completes a lap every 90 seconds, and Robert runs clockwise and completes a lap every 80 seconds. Both start from the start line at the same time. At some random time between 10 minutes and 11 minutes after they begin to run, a photographer standing inside the track takes a picture that shows one-fourth of the track, centered on the starting line. What is the probability that both Rachel and Robert are in the picture?"

This can be simply solved by just finding the time intervals in which they would appear in the picture. However, what if the camera wasn't centered at the middle of starting line, but instead the camera's position was chosen uniformly at random (while still only being able to see one-fourth of the circular track)? How would one go about solving that?

Note by Michael Tong
4 years ago

No vote yet
2 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I suppose you could use a variation of Lagrange Interpolation to account for the fact that the camera isn't centered at the middle of the starting line. Hm...tricky concept. Hope I gave you an adequate start :/

Manish Samson - 1 year, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...