Waste less time on Facebook — follow Brilliant.
×

An awesome number theory question!

Prove that for any integer \(n>1\), \(n^5 + n^4 + 1\) is not a prime number.

Note by Saran Balachandar
1 year, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(Adding\quad and\quad subtracting\quad { n }^{ 3 }\\ \\ { n }^{ 5 }+{ n }^{ 4 }+n^{ 3 }-{ n }^{ 3 }+1\\ =\quad { n }^{ 3 }({ n }^{ 2 }+n+1)\quad -\quad { n }^{ 3 }-{ n }^{ 2 }-n+1\\ { =\quad n }^{ 3 }({ n }^{ 2 }+n+1)-n({ n }^{ 2 }+n+1)+({ n }^{ 2 }+n+1)\\ =\quad ({ n }^{ 3 }-n+1)({ n }^{ 2 }+n+1)\\ The\quad original\quad expression\quad is\quad expressed\quad as\quad a\quad product\quad of\quad two\quad factors\quad \\ \Longrightarrow \quad It\quad is\quad not\quad a\quad prime\quad number\quad .\)

Saran Balachandar - 1 year, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...