Today I met a prob:

"Prove that \( (sin \alpha)^{2007} + cos \alpha < \frac{5}{4} \) (With \( \alpha \) is an acute angle)

Please tell me the way to solve the prob. (or if the prob's wrong)

No vote yet

5 votes

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet cos a = sqrt (1- sin^2 a)

We now want to find the maximum of x^2007 + sqrt(1-x^2) where x is in the range (0,1)

Using some calculus right away, you can find the maximum, but that would be overkill...

x^2007 + sqrt(1-x^2) < x^2 + sqrt(1-x^2)

Replace x^2 with y

we want to maximise y + sqrt (1-y). This is far easier to attack with calculus, and has a global maximum of 5/4, when y = 3/4. This gives us the desired result, or we could complete the square:

Replace 1-y with z^2:

y + sqrt (1-y) - 5/4 = (1-z^2) + z - 5/4 = -z^2 + z - 1/4 = (-1/4) ( 4z^2 - 4z + 1) = (-1/4) (2z-1)^2 <= 0,

this gives us the desired result

Log in to reply

You're missing the mark, while coming close to it in numerous ways. Remember that \(\sin^2 \alpha \) can be replaced with \( 1-\cos^2 \alpha\).

All that you need to show is that \( \sin^2 \alpha + \cos \alpha = 1 + \cos \alpha - \cos^2 \alpha \leq \frac{5}{4} \), which follows directly from completing the square.

This in essence is what you did, though through a convoluted substitution that hides the simplicity of it.

Log in to reply

Ah yes, you are right. By substituting on the sine initially, it made things slightly harder.

After finishing though, it is easy (if tidiness is desired) to go back and express z as the cosine, which gives us the (simpler) one line solution:

sin^2007(x) + cosx < sin^2(x) + cosx = 1 + cosx - cos^2(x) <= 5/4

Log in to reply

@Calvin: Thank you. I just didn't recognize that simple thing. Shame on me...

Log in to reply

Comment deleted May 29, 2013

Log in to reply

If \( \alpha = \frac{\pi}{4} \), what is \( \sin \alpha + \cos \alpha\)?

Your initially inequality is not true. It becomes true if you say that it is less than \( \sqrt{2} \). Do you know how to show that?

Log in to reply

It is easy to show that \(\sin\alpha+\cos\alpha \leq \sqrt{2} \) but how someone would prove the inequality asked by OP? Any hints for that?

Thanks!

Log in to reply

He wanted to use the (incorrect) fact that \( \sin \alpha + \cos \alpha \leq 1 \). Assuming this is true, then \( \sin^{2007} \alpha + \cos \alpha \leq \sin \alpha + \cos \alpha \leq 1 < \frac{5}{4} \).

Of course, this is not true, and we instead get \( \sqrt{2} \) on the RHS, which is not good enough.

Can you modify the argument slightly to make it work?

Log in to reply

Log in to reply

I'm sorry! I made a terrible mistake!. I don't know why (or how) I wrote that. So embarrassing!! Deleting comment.... And yes, I can show that....

Log in to reply