$\int \sqrt[3]{\tan{x}} \, dx$

Note by Monojit Kamilya
4 years, 11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Make the substitution $\tan x = t^{3/2}$

I believe we then need to just find out $\int \frac{dt}{1+t^3}$

which should be doable by partial fraction methods.

- 4 years, 11 months ago

That's right. Note that $$1 + t^3 = (1+t)(1-t+t^2)$$

Also,

$$\frac{1}{3} \left(\frac{2-t}{t^2-t+1}+\frac{1}{t+1}\right)=\frac{1}{t^3+1}$$

The second part of the integral can now be solved by a simple substitution.

For the first part, use

$$\frac{2-t}{t^2-t+1}=-\frac{2 t-4}{2 \left(t^2-t+1\right)}=-\frac{1}{2} \left(\frac{2 t-1}{t^2-t+1}-\frac{3}{t^2-t+1}\right)$$

The first integral with $$\frac{2 t-1}{t^2-t+1}$$ can be solved by a simple substitution, $$u = 1 - t + t^2$$

For the second one, note that $$t^2-t+1=a+(t-b)^2$$ with $$a = \frac{3}{4}$$ and $$b = \frac{1}{2}$$

So,

$$\frac{1}{t^2-t+1}=\frac{1}{\left(t-\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{4}{3} \frac{1}{\left(\sqrt{\frac{4}{3}} \left(t-\frac{1}{2}\right)\right)^2+1}$$

Now make one final substitution here to arrive at the well-known $$\int \frac{1}{z^2+1} \, dz$$ . Your final solution looks like this:

$$\frac{1}{4} \left(-2 \sqrt{3} \tan ^{-1}\left(2 \sqrt[3]{\tan (x)}+\sqrt{3}\right)-2 \sqrt{3} \tan ^{-1}\left(\sqrt{3}-2 \sqrt[3]{\tan (x)}\right)-2 \log \left(\tan ^{\frac{2}{3}}(x)+1\right)+\log \left(\tan ^{\frac{2}{3}}(x)+\sqrt{3} \sqrt[3]{\tan (x)}+1\right)+\log \left(\tan ^{\frac{2}{3}}(x)-\sqrt{3} \sqrt[3]{\tan (x)}+1\right)\right)$$

Phew.

post not guaranteed to be error free

- 4 years, 11 months ago