The polynomials \(x^2 + 2\) and \(x^2+x-1\) are written on a board. If the polynomials \(f(x)\) and \(g(x)\) are already on the board (\(f(x)\) may equal to \(g(x)\)) we are allowed to add any of \(f(x) g(x), f(x) -g(x)\) or \(f(x) + g(x)\) to the board.

(a) Can the polynomial \(x\) ever be made to appear on the board?

(b) Can the polynomial \(4x-1\) ever be made to appear on the board?

Give proof.

- \(f(x)\) and \(g(x)\) can represent any two polynomials on the board

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest(a) Suppose \(a, b\) are integers. If \(f(a), g(a)\) are divisible by \(b\), then \(f(a)+g(a), f(a)-g(a), f(a)g(a)\) are all divisible by \(b\) as well. Thus the property "divisible by \(b\) at \(x = a\)" is an invariant; they will hold for all polynomials generated.* At \(x = 3\), \(f(x) = g(x) = 11\) and thus both of them are divisible by \(11\), so all polynomials generated will be divisible by \(11\) on \(x=3\). But \(x\) doesn't satisfy this (since it gives \(3\) on \(x=3\)). So it cannot appear.

(*) We can use induction to formalize this, inducting on the number of operations required to generate a polynomial. The base case is \(f, g\) that takes zero steps; the induction step lies on the fact that if a polynomial \(p\) can be generated (in the shortest way) from either of \(f+g, f-g, fg\), then \(f,g\) must be generated before \(p\), so we can use induction there.

(b) It can appear. Let \(F_1(x) = x^2 + 2, F_2(x) = x^2 + x - 1\). Then,

Log in to reply

What is the reason for choosing \( x = 3 \)? In particular, if we were given 2 other (quadratic) polynomials, how do we know what to use?

Can we classify the set of polynomials which can be reached through these operations?

Hint:Bezout's Identity.Log in to reply

Nice question :)

Hint:Find an Invariant.Hint:Evaluate the polynomial functions at a particular point.Log in to reply

I don't really get your problem. What are g(x) and f(x)? Are g(x) and f(x) equal to \(x^{2}+1\) and/or \(x^{2} +x-1\)

Log in to reply

I think f(x) and g(x) some other polynomial function

Log in to reply

It's any \(f(x), g(x)\) that is written on the board.

Log in to reply

\(f(x)\) and \(g(x)\) are any two polynomials on the board.

Log in to reply