**we know,**
**in parallel combination**

**resistance,R=\(\frac{\(R_{1}\)\(R_{2}\)}{(\(R_{1}\)+\(R_{2}\)})**

**and,V=\(i_{1}\)\(R_{1}\)=\(i_{2}\)\(i_{2}\)\(R_{2}\)=iR**

*Consider,*

**iR=\(i_{1}\)\(R_{1}\)**

**=>\(i_{1}\)=\(\frac{iR}{\(R_{1}\)})**

**=>\(i_{1}\)=\(\frac{i\(\frac{\(R_{1}\)\(R_{2}\)}{\(R_{1}\)+\(R_{2}\)**

**=>\(i_{1}\)=\(\boxed{\(\frac{i\(R_{2}\)}{\(R_{1}\)+\(R_{2}\)})})

**similarly,**

\(\boxed{\(i_{2}\)=\(frac{i\(R_{1}\)}{\(R_{1}\)+\(R_{2}\)})})

## Comments

Sort by:

TopNewestPlease inclue LaTex in \(\backslash(\ldots\backslash)\) for proper formatting. – Rohit Udaiwal · 7 months, 3 weeks ago

Log in to reply