Waste less time on Facebook — follow Brilliant.
×

Australian School of Excellence 2015 Geometry Exam

  • Each question is worth 7 points

  • Time allowed is 4 hours

  • No books, notes or calculators permitted

  • Write full proofs with your answers

1) Let \(\Gamma\) be the circumcircle of acute triangle \(ABC\). Let \(\omega\) be a circle passing through \(A\) and tangent to \(BC\) at \(X\). Suppose that \(\omega\) intersects \(\Gamma\) for a second time at \(Y\) where \(Y\) lies on the minor arc \(AC\) of \(\Gamma\). The line \(AX\) intersects \(\Gamma\) for a second time at \(W\). The line \(XY\) intersects \(\Gamma\) for a second time at \(Z\).

Prove that the minor arcs \(CW\) and \(ZB\) of \(\Gamma\) are equal in length.

2) Let \(M\) be a point on side \(AB\) of equilateral triangle \(ABC\). The point \(N\) is such that triangle \(AMN\) is equilateral but \(N\) does not lie on \(AC\). Let \(D\) be the intersection of lines \(AC\) and \(BN\). Let \(K\) be the intersection of lines \(CM\) and \(AN\).

Prove \(KA = KD\).

3) Let \(X\), \(Y\) and \(Z\) be points on the sides \(AD\), \(AB\) and \(AC\) respectively of rectangle \(ABCD\).

Given that \(AX = CZ\), prove that \(XY + YZ \geq AC\).

4) Triangle \(ABC\) satisfies \(\angle ABC = 90^{\circ}\). Point \(P\) lies on side \(BC\), point \(Q\) lies on side \(AB\) and point \(R\) lies inside triangle \(ABC\) such that

\[\angle PAB = \angle RAP = \angle CAR \quad \text{ and } \quad \angle BCQ = \angle QCR = \angle RCA.\]

Prove that triangle \(PQR\) is equilateral.

5) Let \(H\) be the orthocentre of triangle \(ABC\). The circle with diameter \(AC\) intersects circle \(ABH\) for a second time at point \(K\).

Prove that line \(CK\) bisects segment \(BH\).

Note by Sharky Kesa
1 year, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

solution of problem 2 :

Ahmad Saad - 1 year ago

Log in to reply

solution of problem 5 :

Ahmad Saad - 1 year ago

Log in to reply

Solution of problem 1 :

Ahmad Saad - 1 year ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...