Prove that

\[ (1-x^3)^n = (1-x)^{3n} + 3nx (1-x)^{3n-2} + \dfrac{3n(3n-3)}{2\times 1} x^2 (1-x)^{3n-4} + \cdots + 3^n x^n (1-x)^n . \]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestR. H. S. Taking \((1-x)^n\) common, what remains is the Binomial expansion of \([3x + (1-x)^2]\) to the power n. Hence proved.

Log in to reply