The total energy of a blackbody cavity is given by

$\int \frac{E_n}{e^{\beta E} - 1} \times g(n)\, dn.$

The fundamental wavelength of the photon is given by $L$ and we have $\lambda_n = L/n.$

The energy of the $n$th level is given by $E_n = n\hbar\omega$ and we have $\omega = 2\pi c/L.$

In one dimension, there is just one mode per $\omega_n$ (ignoring polarization) and we have $g(n) = 1.$ Thus, $\begin{aligned} E_\textrm{total} &= \int\frac{n\hbar \omega}{e^{\beta n\hbar\omega} - 1}\, dn\\ &= \hbar\omega \int\frac{n}{e^{\beta n\hbar\omega} - 1}\, dn. \end{aligned}$ Letting $\gamma = \beta \hbar n\omega$ we have $\begin{aligned} E_\textrm{total} &= \frac{\hbar\omega}{\left(\beta\hbar\omega\right)^2}\int\frac{\gamma}{e^{\gamma} - 1}\, d\gamma \\ &=T^2 \times \textrm{const.} \end{aligned}$

In two dimensions, there are multiple modes for each $n$ since photons can oscillate in two dimensions and $n = \sqrt{n_x^2 + n_y^2},$ thus (ignoring polarization) $g(n) = 2\pi n.$

Thus our integral becomes $\begin{aligned} E_\textrm{total} &= \hbar\omega \int\frac{n}{e^{\beta n\hbar\omega} - 1}g(n)\, dn \\ &= 2\pi\frac{\hbar\omega}{\left(\beta\hbar\omega\right)^3} \int\frac{\gamma^2}{e^{\gamma} - 1}\, d\gamma \\ &= T^3 \times \textrm{const.} \end{aligned}$

In three dimensions, $n = \sqrt{n_x^2 +n_y^2 + n_z^2}$ and $g(n)$ is generated by a spherical shell so that (ignoring polarization) $g(n) = 4\pi n^2$ and

$\begin{aligned} E_\textrm{total} &= \hbar\omega \int\frac{n}{e^{\beta n\hbar\omega} - 1}g(n)\, dn \\ &= 4\pi\frac{\hbar\omega}{\left(\beta\hbar\omega\right)^4} \int\frac{\gamma^3}{e^{\gamma} - 1}\, d\gamma \\ &= \frac{4\pi^5}{15}k_b^4 T^4 \frac{L^3}{h^3c^3} \\ &= \frac{4\pi^5}{15} \frac{k_b^4 T^4}{h^3c^3} V \\ &= T^4 \times V\times\textrm{const.} \end{aligned}$

No vote yet

1 vote

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

There are no comments in this discussion.