# [Brilliant Blog] Combinations

Test yourself

1. How many ways can three different appetizers be chosen from a menu that has 10 choices?

2. In New York city, all the streets are arranged in a grid. A hospital is located 5 blocks east and 6 blocks north of an accident. How many ways are there to get there, if we only go 1 block north or 1 block east at each intersection?

3. An office with 30 people wants to have 4 teams of 5 players participate in a charity tournament. How many ways can the teams be made? Hint: Be very careful.

4. How many ordered integer solutions $$(a, b, c, d)$$ are there to $$a + b + c + d = 20$$ subject to $$a \geq 1, b \geq 2, c \geq 3, d \geq 4$$?

5. Winston must choose 4 courses for his final semester of school. He must take at least 1 science class and at least 1 arts class. If his school offers 4 science classes, 3 arts classes and 3 other classes, how many different choices for classes does he have?

Note by Peter Taylor
5 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Problem 2 is 11C5

- 5 years, 5 months ago

sorry i made my calculation of first wrong the correct answer for 1 is 120 as 720/6

- 5 years, 5 months ago

The fourth answer should be 13C3 which is 13x12x11/6 which is 286.

- 5 years, 5 months ago

For fifth what is the correct answer? i got 672 as my answer, $$4*3*8*7$$

- 5 years ago

The third should be 30C5 x 25C5 x 20C5 x 15C5. Four teams will be formed, with 5 players each. 10 people will be left over.

- 5 years, 5 months ago

This is actually a very common mistake made (also in this week's problem set). Remember that the order of the teams doesn't matter.

According to your method, how many ways are there for an office of 3 people to pick 3 teams of 1 person each? There should clearly only be 1 possible way.

Staff - 5 years, 5 months ago

Is the answer $\binom{30}{20} \times \frac{(20!)}{(5!)^{4} \times (4!)}$

- 5 years, 5 months ago

I understand. What is the correct way to do this question?

- 5 years, 5 months ago

Think about how to solve it. You should have been exposed to enough ideas in the blog that you should know how to adapt your initial answer.

Staff - 5 years, 5 months ago

the answer of 1 is 720

- 5 years, 5 months ago

Answer for Question 1:720 ways because after you pick the first one,there are nine choices left.After you pick the second one there are 8 choices left so $$10 \times 9 \times 8$$ =720

- 5 years, 5 months ago

The answer is 120 because those ways of choosing the three appetizers are counted many times (ABC, ACB, BAC, BCA, CAB, CBA are the same).

The answer is $${10 \choose 3}$$ = $$\frac {10*9*8}{3*2*1}$$ = $$120$$

- 5 years, 5 months ago

Thanks for pointing that out.It should be $$10 \times 9 \times 8$$ = 720 / 6 = 120

- 5 years, 5 months ago