# Brilliant Summation Contest Season-1 (Part 1) Hi Brilliant! I've decided to start the first ever summation contest here.

The aims of the Summation contest are to improve skills in the computation of sums, to learn from each other as much as possible, and of course to have fun. Anyone here may participate in this contest.

The rules are as follows:

• I will start by posting the first problem. If there is a user solves it, then they must post a new one.

• You may only post a solution of the problem below the thread of problem and post your proposed problem in a new thread. Put them separately.

• Only make substantial comment that will contribute to the discussion.

• Make sure you know how to solve your own problem before posting it in case there is no one can answer it within 48 hours, then you must post the solution and you have a right to post another problem.

• If the one who solves the last problem does not post his/her own problem after solving it within a day, then the one who has a right to post a problem is the last solver before him/her.

• You are NOT allowed to post a multiple summation problem.

• Problems must be purely of summation. They shouldn't have integrals and products in them. Solutions can follow methods that use integrals and products.

• It is NOT compulsory to post original problems. But make sure it has not been posted on brilliant.

• There is no restriction in the standard of summations.

Format your post is as follows:

 1 2 3 4 5 6 7 **SOLUTION OF PROBLEM xxx (number of problem) :** **[Post your solution here]** **PROBLEM xxx (number of problem) :** **[Post your problem here]** 

The comments will be easiest to follow if you sort by "Newest": See Part-2. 3 years, 6 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

PROBLEM 16: If $0 < \theta < 2\pi$, evaluate $\sum_{n=1}^\infty \frac{\cos n\theta}{n}$ Don't forget to justify the convergence!

- 3 years, 6 months ago

The contest has shifted to this note.

- 3 years, 6 months ago

Solution To Problem 16 :

Let $a_{n} = \dfrac{1}{n}$ and $b_{n} = \cos n \theta$. Note that both sequences satisfy the criterion of Dirchlet's Test. Therefore, the sum $\displaystyle \text{S} = \sum_{n=1}^{\infty} \dfrac{\cos n \theta}{n}$ converges.

Now,

$\text{S} = \sum_{n=1}^{\infty} \dfrac{\cos n \theta}{n}$

$= \Re \left( \sum_{n=1}^{\infty} \dfrac{e^{i n \theta}}{n} \right)$

$= -\Re \left(\ln (1-e^{i \theta}) \right)$

$= - \ln\left| 2\sin \left( \dfrac{\theta}{2} \right) \right| \quad \square$

- 3 years, 6 months ago

The next problem would be posted here.

- 3 years, 6 months ago

Problem 15:

Prove that:

$\displaystyle \sum_{n=1}^{\infty}\frac{1}{(n^{2}+1)^{2}}=\frac{\pi}{4}\left(\coth(\pi)+\pi \text{csch}^{2}(\pi)-\frac{2}{\pi}\right)$

- 3 years, 6 months ago

Solution to Problem 15:

Refer to my solution to Problem 8 for some of the technical details required about $C_N$ and $\pi \cot \pi z$.

Integrating $\frac{\pi \cot \pi z}{(z^2+1)^2}$ around the positively-oriented square contour $C_N$ with corners at $\pm(N+\tfrac12) \pm i(N+\tfrac12)$, we deduce that $\begin{array}{rcl} \displaystyle \frac{1}{2\pi i}\int_{C_N}\frac{\pi \cot \pi z}{(z^2+1)^2}\,dz & = & \displaystyle \left(\sum_{n =-N}^N\mathrm{Res}_{z=n} + \mathrm{Res}_{z=i} + \mathrm{Res}_{z=-i}\right) \frac{\pi \cot\pi z}{(z^2 + 1)^2}\,dz \\ & = & \displaystyle 1 + 2\sum_{n=1}^N \frac{1}{(n^2+1)^2} + \left(\mathrm{Res}_{z=i} + \mathrm{Res}_{z=-i}\right)\frac{\pi \cot\pi z}{(z^2 + 1)^2} \end{array}$ and $\mathrm{Res}_{z=\pm i}\frac{\pi \cot \pi z}{(z^2+1)^2} \; = \; \frac{d}{dz} \frac{\pi \cot \pi z}{(z \pm i)^2} \Big|_{z=\pm i} \; = \; -\tfrac14\pi^2 \mathrm{cosech}^2\pi - \tfrac14\pi\mathrm{coth}\pi$ so that $\frac{1}{2\pi i}\int_{C_N} \frac{\pi \cot \pi z}{(z^2+1)^2}\,dz \; = \; 1 + 2\sum_{n=1}^N \frac{1}{(n^2+1)^2} - \tfrac12\pi^2 \mathrm{cosech}^2\pi - \tfrac12\pi\mathrm{coth}\pi$ Since the integral around $C_N$ tends to $0$ as $N \to \infty$, the result follows.

As before, I pass on setting the next problem.

- 3 years, 6 months ago

Sir I can't think of a good problem and Ishan is down with fever. Can you post the next problem here?

- 3 years, 6 months ago

Alternate Method:

$\displaystyle \sum_{n=1}^\infty \frac{1}{(n^2+1)^2}=\frac{1}{4}\sum_{n=1}^\infty \left\{ \frac{1}{(-1+in)^2}-\frac{1}{-1+in}+\frac{1}{(1+in)^2}+\frac{1}{1+in}\right\}$

Here, we can use polygamma function and use their reflection formulas to get to the final result.

- 3 years, 6 months ago

Problem 14:

Prove that:

$\sum_{n=1}^\infty\frac{\psi_1(n)}{2^n n^2}=\frac{19\pi^4}{1440}-\frac{\pi^2}{24}\log^2(2)-\frac{\log^4(2)}{24}-\frac{\zeta(3) \log(2)}{4}$

This problem has been solved by Mark Hennings.

- 3 years, 6 months ago

Solution to Problem 14:

We note that $\begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{\psi^{(1)}(n)}{2^n n^2} & = & \displaystyle \tfrac12\zeta(2) - \sum_{n=1}^\infty \frac{1}{2^{n+1}(n+1)^2}\big[H^{(2)}_n - \zeta(2)\big] \\ & = & \displaystyle\zeta(2)\sum_{n=1}^\infty \frac{1}{2^n n^2} - \sum_{n=1}^\infty \frac{H_n^{(2)}}{2^{n+1}(n+1)^2} \\ & = & \displaystyle\zeta(2)\Big[ \tfrac{1}{12}\pi^2 - \tfrac12\ln^22\Big] - \sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2 2^{n+1}} \end{array}$ Going back to the previous problem, we have $\begin{array}{rcl} \displaystyle A(x) & = & \displaystyle \sum_{n=1}^\infty \big(H_n^{(2)}\big)^2x^n \; =\; \sum_{n=1}^\infty \left(H_{n-1}^{(2)} + \tfrac{1}{n^2}\right)^2 x^n \\ & = & \displaystyle \sum_{n=1}^\infty \big(H_n^{(2)}\big)^2 x^{n+1} + 2\sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2} x^{n+1} + \mathrm{Li}_4(x) \\ & =& \displaystyle xA(x) + 2\sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2} x^{n+1} + \mathrm{Li}_4(x) \\ (1 - x)A(x) & = & \displaystyle 2\sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2} x^{n+1} + \mathrm{Li}_4(x) \end{array}$ and hence, putting $x=\tfrac12$, $\tfrac12\sum_{n=1}^\infty \frac{\big(H_n^{(2)}\big)^2}{2^n} \; = \; 2\sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2 2^{n+1}} + \mathrm{Li}_4(\tfrac12)$ and so $\sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2 2^{n+1}} \; = \; \tfrac{1}{1440}\pi^4 -\tfrac{1}{24}\pi^2\ln^22 + \tfrac{1}{24}\ln^42 + \tfrac14\zeta(3)\ln2$ so that $\sum_{n=1}^\infty \frac{\psi^{(1)}(n)}{2^n n^2} \; = \; \tfrac{19}{1440}\pi^4 - \tfrac{1}{24}\pi^2\ln^22 - \tfrac{1}{24}\ln^42 - \tfrac14\zeta(3)\ln2$ Someone else can post the next question.

- 3 years, 6 months ago

This question was essentially the same as the previous question. @Aditya Kumar If you set the next question, please post a new one.

- 3 years, 6 months ago

Can you post the problem? Post it in this note as it will be the 15th problem (don't count spl prob).

- 3 years, 6 months ago

PROBLEM 13:

Show that $\sum_{n=1}^\infty \frac{\big(H_n^{(2)}\big)^2}{2^n} \; = \; \tfrac{1}{360}\pi^4 - \tfrac16\pi^2\ln^22 + \tfrac16\ln^42 + 2\mathrm{Li}_4(\tfrac12) + \zeta(3)\ln2$

This problem has been solved by Aditya Kumar

- 3 years, 6 months ago

Solution to Problem 13:

Just to see how nasty the last integral in this problem can get, here are the associated indefinite integrals!

Start with $\begin{array}{rcl} B(x) & = & \displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2}x^{n+1} \; = \; \int_0^x \left(\int_0^u \sum_{n=1}^\infty H_n^{(2)}v^n\,dv\right)\,\frac{du}{u} \\ & = & \displaystyle \int_0^x \left(\int_0^u \frac{\mathrm{Li}_2(v)}{1-v}\,dv\right)\,\frac{du}{u} \; = \; \int_0^x \left(\int_v^x \frac{\mathrm{Li}_2(v)}{u(1-v)}\,du\right)\,dv \\ & = & \displaystyle \int_0^x \ln\big(\tfrac{x}{v}\big) \frac{\mathrm{Li}_2(v)}{1-v}\,dv \end{array}$ Now (differentiate back to check): $\begin{array}{rcl} \displaystyle \int_0^x \frac{\mathrm{Li}_2(v)}{1-v}\,dv & = & \displaystyle -\tfrac13\pi^2 \ln(1 - x) + \ln^2(1 - x) \ln x + \ln(1 - x)\mathrm{Li}_2(x) + 2\mathrm{Li}_3(1 - x) - 2 \zeta(3) \\ \displaystyle \int_0^x \frac{\mathrm{Li}_2(v)}{1-v}\ln v\,dv & = & \displaystyle \tfrac{1}{45}\pi^4 - \tfrac16 \pi^2 \ln^2(1 - x) + \tfrac14 \ln^4(1 - x) + \tfrac12\ln^2(1 - x) \ln^2x \\ & & \displaystyle + (\ln^2(1 - x) - \ln(1 - x) \ln x + \ln^2x) \mathrm{Li}_2(x) - \tfrac12 \mathrm{Li}_2(x)^2 \\ & & \displaystyle + \ln^2\left(\frac{x}{1-x}\right) \mathrm{Li}_2\left(-\frac{x}{1-x}\right) + 2 \ln(1 - x) \mathrm{Li}_3(1 - x) - 2 \ln x \mathrm{Li}_3(x) \\ & & \displaystyle + 2 \ln(1 - x) \mathrm{Li}_3\left(-\frac{x}{1-x}\right) - 2 \ln x \mathrm{Li}_3\left(-\frac{x}{1 - x}\right) - 2 \mathrm{Li}_4(1 - x) \\ & & \displaystyle + 2 \mathrm{Li}_4(x) + 2 \mathrm{Li}_4\left(-\frac{x}{1 - x}\right) \end{array}$ and hence $B(\tfrac12) \; = \; \tfrac{1}{1440}\pi^4 - \tfrac{1}{24}\pi^2 \ln^22 + \tfrac{1}{24}\ln^42 + \tfrac14\zeta(3)\ln 2$ Now consider $\begin{array}{rcl} \displaystyle A(x) & = & \displaystyle \sum_{n=1}^\infty \big(H_n^{(2)}\big)^2x^n \; =\; \sum_{n=1}^\infty \left(H_{n-1}^{(2)} + \tfrac{1}{n^2}\right)^2 x^n \\ & = & \displaystyle\sum_{n=1}^\infty \sum_{n=1}^\infty \big(H_n^{(2)}\big)^2 x^{n+1} + 2\sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2} x^{n+1} + \mathrm{Li}_4(x) \\ & =& \displaystyle xA(x) + 2 B(x) + \mathrm{Li}_4(x) \end{array}$ so that $\begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{\big(H_n^{(2)}\big)^2}{2^n} & = & \displaystyle A(\tfrac12) \; =\; 4B(\tfrac12) + 2\mathrm{Li}_4(\tfrac12) \\ & = & \displaystyle \tfrac{1}{360}\pi^4 - \tfrac16\pi^2\ln^22 + \tfrac16\ln^42 + 2\mathrm{Li}_4(\tfrac12) + \zeta(3)\ln2 \end{array}$ as required.

- 3 years, 6 months ago

- 3 years, 6 months ago

The main integral to evaluate here is $\displaystyle \int \dfrac{\ln^2(1-x) \ln x}{x} \mathrm{d}x$. Rest of the integrals follow from this using Euler's Reflection Formula and/or IBP. The integral $\displaystyle \int \dfrac{\operatorname{Li}_{2}(x)}{1-x} \mathrm{d}x$ is evaluated in my solution of Problem 2.

- 3 years, 6 months ago

I was wondering whether we can extend the result to other weights too?

- 3 years, 6 months ago

I have solved the indefinite integrals by using Landen's Identity.

- 3 years, 6 months ago

Solution to Problem 13:

Consider the function: $\displaystyle f\left( x \right) =\sum _{ n=1 }^{ \infty }{ { \left( { H }_{ n }^{ (2) } \right) }^{ 2 }{ x }^{ n } }$.

$f\left( x \right) =\sum _{ n=1 }^{ \infty }{ { \left( { H }_{ n-1 }^{ (2) }+\frac { 1 }{ { n }^{ 2 } } \right) }^{ 2 }{ x }^{ n } }$

$f\left( x \right) =\sum _{ n=1 }^{ \infty }{ { \left( { H }_{ n-1 }^{ (2) } \right) }^{ 2 }{ x }^{ n } } +{ \text{Li} }_{ 4 }(x)+2\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n-1 }^{ (2) }{ x }^{ n } }{ { n }^{ 2 } } }$

On changing the summation index from $n$ to $n+1$, we get:

$f\left( x \right) =xf\left( x \right) +{ \text{Li} }_{ 4 }(x)+2\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n+1 } }{ { \left( n+1 \right) }^{ 2 } } } \quad \quad (...1)$

We have to find $\displaystyle \sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n+1 } }{ { \left( n+1 \right) }^{ 2 } } }$

$\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n+1 } }{ { \left( n+1 \right) }^{ 2 } } } =\int _{ 0 }^{ x }{ \left[ \sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n } }{ { \left( n+1 \right) } } } \right] dx } \quad \quad (...2)$

Now we have to find $\displaystyle \sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n } }{ { \left( n+1 \right) } } }$

I'll use the identity: $\displaystyle \sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n } }{ n } } =\int _{ 0 }^{ x }{ \frac { { \text{Li} }_{ 2 }\left( t \right) }{ t\left( 1-t \right) } dt }$.

Now, we differentiate w.r.t. x and get:

$\sum _{ n=1 }^{ \infty }{ { H }_{ n }^{ (2) }{ x }^{ n-1 } } =\frac { { \text{Li} }_{ 2 }\left( x \right) }{ x\left( 1-x \right) }$

We multiply both sides by x:

$\sum _{ n=1 }^{ \infty }{ { H }_{ n }^{ (2) }{ x }^{ n } } =\frac { {\text{Li} }_{ 2 }\left( x \right) }{ \left( 1-x \right) }$

Now, we integrate both sides w.r.t. $x$ from 0 to x:

$\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n+1 } }{ n+1 } } =2{ \text{Li} }_{ 3 }\left( 1-x \right) -2{ \text{Li} }_{ 2 }\left( 1-x \right) \ln { \left( 1-x \right) } -{ \text{Li} }_{ 2 }\left( x \right) \ln { \left( 1-x \right) } -\ln { \left( x \right) } { \left( \ln { \left( 1-x \right) } \right) }^{ 2 }-2\zeta \left( 3 \right)$

On dividing both sides by $x$:

$\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n } }{ n+1 } } =\frac { 2{ \text{Li} }_{ 3 }\left( 1-x \right) }{ x } -\frac { 2{ \text{Li} }_{ 2 }\left( 1-x \right) \ln { \left( 1-x \right) } }{ x } -\frac { {\text{Li} }_{ 2 }\left( x \right) \ln { \left( 1-x \right) } }{ x } -\frac { \ln { \left( x \right) } { \left( \ln { \left( 1-x \right) } \right) }^{ 2 } }{ x } -\frac { 2\zeta \left( 3 \right) }{ x }$

Now plugging this in eqn $2$, we get:

$\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (2) }{ x }^{ n+1 } }{ { \left( n+1 \right) }^{ 2 } } } =\int _{ 0 }^{ x }{ \left[ \frac { 2{ \text{Li} }_{ 3 }\left( 1-x \right) }{ x } -\frac { 2{ \text{Li} }_{ 2 }\left( 1-x \right) \ln { \left( 1-x \right) } }{ x } -\frac { { \text{Li} }_{ 2 }\left( x \right) \ln { \left( 1-x \right) } }{ x } -\frac { \ln { \left( x \right) } { \left( \ln { \left( 1-x \right) } \right) }^{ 2 } }{ x } -\frac { 2\zeta \left( 3 \right) }{ x } \right] dx }$

Now plugging this in eqn $1$, we get:

$f\left( x \right) =\frac { { \text{Li} }_{ 4 }\left( x \right) }{ 1-x } +\frac { 2 }{ 1-x } \int _{ 0 }^{ x }{ \left[ \frac { 2{ \text{Li} }_{ 3 }\left( 1-x \right) }{ x } -\frac { 2{\text{Li} }_{ 2 }\left( 1-x \right) \ln { \left( 1-x \right) } }{ x } -\frac { { \text{Li} }_{ 2 }\left( x \right) \ln { \left( 1-x \right) } }{ x } -\frac { \ln { \left( x \right) } { \left( \ln { \left( 1-x \right) } \right) }^{ 2 } }{ x } -\frac { 2\zeta \left( 3 \right) }{ x } \right] dx }$

Now we take $x=\frac { 1 }{ 2 }$ and compute the integral. Then we finally get:

$\boxed\sum_{n=1}^\infty \frac{\big(H_n^{(2)}\big)^2}{2^n} \; = \; \tfrac{1}{360}\pi^4 - \tfrac16\pi^2\ln^22 + \tfrac16\ln^42 + 2\mathrm{Li}_4(\tfrac12) + \zeta(3)\ln2$

The final integral is left to the reader's exercise. I didn't post it as it would've made this solution too long.

- 3 years, 6 months ago

I'm impressed. The last integral is a brute.

- 3 years, 6 months ago

In fact we can even generalize the result by finding the indefinite integral of the last one and in turn the generating function $\displaystyle \sum_{n=1}^{\infty} (H_{n} ^{(2)})^2 x^n$ . The solution gets too long though.

- 3 years, 6 months ago

very beautiful. we need to be very very cautious.

- 10 months, 3 weeks ago

Problem 12:

Prove the following for $|x| < \dfrac{4}{27}$.

$\sum_{n=0}^\infty \binom{3n}{n}x^n = \frac{2\cos(\frac{1}{3} \sin^{-1}(\frac{3\sqrt{3x}}{2}))}{\sqrt{4-27x}}$

This problem has been solved by Mark Hennings and Ishan Singh.

- 3 years, 6 months ago

Solution To Problem 12 :

Proposition : $f(a,z) = \int_{0}^{\infty} \dfrac{x^z}{x^2 +2ax +1} \mathrm{d}x = \dfrac{\pi}{\sin \pi z} \dfrac{\sin((1-z) \cos^{-1}(a))}{\sin(\cos^{-1}(a))}$

Proof : Note that,

$\sum_{n=0}^{\infty}{{U}_{n}(a) {(-x)}^{n}} = \dfrac{1}{x^2 +2ax+1}$

where $U_{n} (x)$ is the Chebyshev Polynomial of the second kind.

$\implies \sum_{n=0}^{\infty}{{U}_{n}(a) \Gamma(n+1) \frac{{(-x)}^{n}}{n!}} = \frac{1}{x^2 +2ax +1}$

Using Ramanujan Master Theorem, we have,

$f(a,z) = \dfrac{\pi}{\sin \pi z} U_{-s} (a)$

$= \dfrac{\pi}{\sin \pi z} \dfrac{\sin((1-z) \cos^{-1}(a))}{\sin(\cos^{-1}(a))} \quad \square$

Now, using Gamma Triplication Formula,

$\text{S} = \sum_{n=0}^{\infty} \dbinom{3n}{n} x^n = \dfrac{\sqrt{3}}{2 \pi} \int_0^\infty \frac{x^{\frac{1}{3}}(1 + x^2)}{(x^2 + 2ax + 1)(x^2 - 2ax + 1)} \mathrm{d}x$

where $a = \dfrac{3}{2} \sqrt{3x}$

Using Partial Fraction and the Proposition, we have,

$\text{S} = \dfrac{\sqrt{3}}{2\pi} \left[ \dfrac{1}{2} f \left( \dfrac{1}{3} , -a \right) + \dfrac{1}{2} f\left( \dfrac{7}{3} , -a \right) - \dfrac{1}{4a} f\left( \dfrac{4}{3} , -a \right) - \dfrac{1}{4a} f\left( \dfrac{10}{3} , -a \right) + \dfrac{1}{2} f \left( \dfrac{1}{3} , a \right) + \dfrac{1}{2} f\left( \dfrac{7}{3} , a \right) + \dfrac{1}{4a} f\left( \dfrac{4}{3} , a \right) + \dfrac{1}{4a} f\left( \dfrac{10}{3} , a \right)\right]$

After simplification, we have,

$\text{S} = \dfrac{2\cos(\frac{1}{3} \sin^{-1}(\frac{3\sqrt{3x}}{2}))}{\sqrt{4-27x}} \quad \square$

- 3 years, 6 months ago

Solution to Problem 12:

By the multiplication formula for the Gamma function, $(3n)! \; = \; \Gamma(3n+1) \; = \; \tfrac{1}{2\pi} 3^{2n+\frac12} \Gamma(n+\tfrac13)\Gamma(n+\tfrac23)\Gamma(n+1)$ and hence ${3n \choose n} \; = \; \frac{3^{3n+\frac12}}{2\pi} \times \frac{\Gamma(n+\frac13)\Gamma(n+\frac23)}{\Gamma(2n+1)} \; = \;\frac{3^{2n+\frac12}}{2\pi}B(n+\tfrac23,n+\tfrac13)$ Thus $\begin{array}{rcl}\displaystyle S \; =\; \sum_{n=0}^\infty {3n \choose n}x^n & = & \displaystyle\frac{\sqrt{3}}{2\pi}\sum_{n=0}^\infty 3^{2n} x^n \int_0^1 u^{n-\frac13}(1-u)^{n-\frac23}\,du \\ & = & \displaystyle \frac{\sqrt{3}}{2\pi} \int_0^1 \frac{u^{-\frac13}(1-u)^{-\frac23}}{1 - 27xu(1-u)}\,du \; =\; \frac{\sqrt{3}}{2\pi}\int_0^1 \frac{u^{-\frac13}(1-u)^{-\frac23}}{1 - 4\sin^23\alpha\, u(1-u)}\,du \end{array}$ where $0 < \alpha < \tfrac16\pi$ is such that $\sin3\alpha = \tfrac12\sqrt{27x}$. The substitutions $u = \sin^2\theta$ and then $x = \tan\theta$ yield $\begin{array}{rcl} S & = & \displaystyle \frac{\sqrt{3}}{2\pi} \int_0^{\frac12\pi} \frac{\sin^{-\frac23}\theta \cos^{-\frac43}\theta \times 2\sin\theta \cos\theta}{1 - \sin^23\alpha\, \sin^22\theta}\,d\theta \; = \; \displaystyle \frac{\sqrt{3}}{\pi}\int_0^{\frac12\pi} \frac{\tan^{\frac13}\theta}{1 - \sin^23\alpha\, \sin^22\theta}\,d\theta \\ & = & \displaystyle\frac{\sqrt{3}}{\pi} \int_0^\infty \frac{x^{\frac13}(1 + x^2)}{(1 + x^2)^2 - 4\sin^23\alpha x^2}\,dx \; = \; \displaystyle\frac{\sqrt{3}}{\pi} \int_0^\infty \frac{x^{\frac13}(1 + x^2)}{(x^2 + 2x \sin3\alpha + 1)(x^2 - 2x \sin3\alpha + 1)}\,dx \\ & = & \displaystyle \frac{\sqrt{3}}{\pi} \int_0^\infty x^{\frac13}f(x)\,dx \; = \; \frac{\sqrt{3}}{\pi}I \end{array}$ where the meromorphic function $f(z) \; =\; \frac{z^2 + 1}{(z^2 + 2z \sin3\alpha + 1)(z^2 - 2z \sin3\alpha + 1)}$ has simple poles at each of the points in $\mathcal{R} \,=\, \{ \pm ie^{3i\alpha}, \pm i e^{-3i\alpha}\}$.

Cutting the complex plane along the positive real axis, and integrating around the "keyhole contour" $\gamma_1 + \gamma_2 - \gamma_3 - \gamma_4$ where

• $\gamma_1$ is the straight line segment from $\epsilon$ to $R$, just above the cut,
• $\gamma_2$ is the circular segment $z = Re^{i\theta}$ for $0 \le \theta \le 2\pi$,
• $\gamma_3$ is the straight line segment from $\epsilon e^{2\pi i}$ to $R e^{2 \pi i}$, just below the cut,
• $\gamma_4$ is the circular segment $z = \epsilon e^{i\theta}$ for $0 \le \theta \le 2\pi$

for any $0 < \epsilon < 1 < R$, then $\left(\int_{\gamma_1} + \int_{\gamma_2} - \int_{\gamma_3} - \int_{\gamma_4}\right) z^{\frac13} f(z\,dz \; = \; 2\pi i \sum_{u \in \mathcal{R}} \mathrm{Res}_{z=u} z^{\frac13}f(z)$ so that $(1 - \omega)\int_\epsilon^R x^{\frac13}f(x)\,dx + \left(\int_{\gamma_2} - \int_{\gamma_4}\right) z^{\frac13}f(z)\,dz \; = \; 2\pi i\sum_{u \in \mathcal{R}} \mathrm{Res}_{z=u} z^{\frac13}f(z)$ Letting $\epsilon \to 0$ and $R \to \infty$, we obtain $(1 - \omega)I \; = \; 2\pi i\sum_{u \in \mathcal{R}} \mathrm{Res}_{z=u} z^{\frac13}f(z)$ and hence $I \; = \; \frac{\pi}{\sqrt{3}(2\cos2\alpha - 1)} \; = \; \frac{\pi}{\sqrt{3}(4\cos^2\alpha - 3)} \; = \; \frac{\pi \cos\alpha}{\sqrt{3}\cos3\alpha}$ so that $S \; = \; \frac{\cos\alpha}{\cos3\alpha} \; = \; \frac{2\cos\left(\frac13\sin^{-1}\left(\frac{3\sqrt{3x}}{2}\right)\right)}{\sqrt{4 - 27x}}$ as required.

- 3 years, 6 months ago

PROBLEM 11

Evaluate $\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1} \;.$

This problem has been solved by Jake Lai and Aditya Kumar.

- 3 years, 6 months ago

It is well-known that $\displaystyle -\frac{\ln(1-x)}{1-x} = \sum_{n=1}^\infty H_nx^n$. So

\begin{aligned} \sum_{n=1}^\infty \frac{(-1)^nH_n}{2n+1} &= \int_0^1 \sum_{n=1}^\infty H_n(-x^2)^n \ dx \\ &= \int_0^1 \frac{-\ln(1+x^2)}{1+x^2} \ dx & (\text{Substitute } u = \tan^{-1} x) \\ &= \int_0^{\pi/4} -\ln(1+\tan^2 u) \ du \\ &= \int_0^{\pi/4} -\ln(\sec^2 u) \ du \\ &= \int_0^{\pi/4} 2 \ln \cos u \ du \\ &= G - \frac{\pi}{2} \ln 2 \end{aligned}

where G is Catalan's constant.

- 3 years, 6 months ago

Alternate Method:

$\sum _{ n=1 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n } }{ 2n+1 } { H }_{ n } } =\sum _{ n=1 }^{ \infty }{ \frac { 2{ H }_{ 2n } }{ 4n+1 } } -\sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n } }{ 2n+1 } }$

Then we can use appropriate generating functions for evaluating it. The integrals have to be carefully handled in order to get the solution.

- 3 years, 6 months ago

Reversing the order of integration and summation to obtain the second line of your argument takes a bit of justification. The generating function series is not monotonic, nor is it uniformly bounded by an integrable function, so the result is not automatic.

You need to integrate from $0$ to $x < 1$, obtaining $\sum_{N=1}^\infty \frac{(-1)^n H_n}{2n+1} x^{2n+1} \; =\; 2\int_0^{\tan^{-1}x} \ln \cos u\,du$ and then let $x$ tend to $1-$, using Abel's Theorem to get the answer (having used the Alternating Series Test to prove that the series $\sum_n (-1)^n\frac{H_n}{2n+1}$ is convergent).

Anyway, you are up for the next question!

- 3 years, 6 months ago

Problem 10:

Evaluate: $\displaystyle \sum_{k=1}^\infty\frac{\zeta(2k+1)-1}{2k+3}$

This problem has been solved by Mark Hennings.

- 3 years, 6 months ago

$\sum_{n=1}^{\infty} \zeta(n+1) \ x^{n} = - \gamma - \psi(1-x)$