Inspired by Upanshu Gupta!

Generalize:

\[\displaystyle \int_{0}^{\infty}{\frac{{x}^{s}{e}^{\alpha x} \ dx}{{(1-\beta {e}^{x})}^{n}}}\]

Inspired by Upanshu Gupta!

Generalize:

\[\displaystyle \int_{0}^{\infty}{\frac{{x}^{s}{e}^{\alpha x} \ dx}{{(1-\beta {e}^{x})}^{n}}}\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestBTW, the integral might have a form like

\(\displaystyle \frac{\Gamma(s+1)}{\Gamma(n-2)} \sum_{k=0}^{n-1}{{(-1)}^{k} {S}_{k} \Phi\left(\beta, s-n+k-2,\alpha\right)}\) where \({S}_{k}\) [\({S}_{0} = 1\)] is the \(k\)th symmetric sum of \(\alpha - 1, \alpha - 2, \cdots ,\alpha - n + 1\)

I have not checked this and it might be wrong. – Kartik Sharma · 1 year, 8 months ago

Log in to reply

– Samuel Jones · 1 year, 8 months ago

Can you specify what is \(\Phi (a,b,c)\) ?Log in to reply

Lerch Transcendent aka Lerch Phi function – Kartik Sharma · 1 year, 8 months ago

It isLog in to reply

@Upanshu Gupta – Kartik Sharma · 1 year, 8 months ago

Log in to reply