Can someone tell me how to approach and solve the problem

Parabolas \[y^2=4a(x-c)\] and \[x^2=4a(y-c')\] where c and c' are variables and touch each other. Locus of their point of contact is :- \[a)xy=a^2\] \[b)xy=2a^2\] \[c)xy=4a^2\] d) None of these

Please post the solution in DETAIL...

Note by Parag Zode
3 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Slope of tangent at point of contact should be same for both the curves.Hence for both the curves take derivative of y with respect to x, substitute the point of contact in the expression obtained by the differentiation and equate.You will then get the required locus as xy=4* (square of a)

Indraneel Mukhopadhyaya - 2 years, 9 months ago

Log in to reply

You can find y in terms of x, a, andc' from eqn.2 . Now substitute it in the first eqn to get the soln...

Vishal Ramesh - 3 years, 7 months ago

Log in to reply

can you clarify something please:

if \(c\) and \(c'\) are variables, wouldn't the locus correspond to a 3 variable equation?

otherwise, considering them as constants, i get \(c\) as answer

Aritra Jana - 3 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...