I've this friend who asked me to ask this to some respectable mathematician or physicist. So, I decided to post this here.

Can there be universe with different laws of mathematics?

I tried to tell him that mathematics is how we define it.

He asked me if 2+2 could be 3. I do not have a clue what that means, so I think he wants to know if the Laws of Thought could be violated.

I said that even if it is, we cannot think of it so why bother?

The subsequent discussion was very cryptic for me but in conclusion he asked me to post it here.

So, please leave your comments. Thank You.

## Comments

Sort by:

TopNewestThis is always an interesting subject. Theoretical physicists and cosmologists imagine there might be "different universes", because "laws of physics might be different in each". The analogy with mathematics is that it has definitions and axioms, which can "be different", so we already have "different abstract universes of mathematics". But it doesn't stop us from discovering and understanding those different abstract universes of mathematics, which is currently easier for us to do now than it is for us to discover other "different universes". In fact, we're able to imagine such different universes and their different laws of physics through the power of mathematics.

See comments below about Jake Lai's question about the Axiom of Choice.

A related question, not synonymous with yours posted here, is whether or not we could someday run across an alien civilization that uses mathematics that contradicts ours. But if any two peoples, whether they're presently on Earth, or one of them is in the past or in the future or alien, at least agree to definitions and axioms of a given branch of mathematics, they are going to arrive at the same conclusions. Our mathematics may differ because it's possible that we're starting with different definitions and axioms---but nothing precludes us from working out consequences of such different definitions and axioms right here and now! Ready to try your hand at imagining some alien mathematics? – Michael Mendrin · 1 year, 7 months ago

Log in to reply

I am also wondering if all the elements of the (short) list of "Laws of Thought" are challenged by quantum logic. I can see that being the case for the Laws of Non-Contradiction and the Excluded Middle, but the Law of Identity would still seem to be on solid footing. You would know better than I would, though, so I'm just curious what your thoughts are. – Brian Charlesworth · 1 year, 7 months ago

Log in to reply

But, as I keep saying here, the power and the beauty of mathematics is that there's nothing to PRECLUDE us from imagining and developing such "alien mathematics"! – Michael Mendrin · 1 year, 7 months ago

Log in to reply

– Brian Charlesworth · 1 year, 7 months ago

I'd imagine that any alien species that "visits" us will have already mastered the interplay between mathematical and physical reality, as well as the ability to think at the quantum level, so I guess we should just get on with it and prepare for that possibility. :)Log in to reply

– Michael Mendrin · 1 year, 7 months ago

Yeah, that's right, we should just get on with it, and start thinking alien mathematics instead of waiting for aliens to come here and baffle us with it. If aliens can think it over there, we can think it here.Log in to reply

– Nolan H · 1 year, 7 months ago

Well, in a different universe, it IS a theory that basic physics could be different. Who knows if the other universes even have sophisticated life forms like us that do math and stuff? Also, the idea of multiple universes is a theory. To test it, they would have to find a black hole (difficult) or make a wormhole (super difficult). Personally, I believe that wormholes just have dead stars and infinite density. Well, hmm, infinite density? How do objects get sucked in then? How much is infinity in that case?Log in to reply

Depends. What does he mean by "3"? Or by "2"? For example 2 is defined as the successor of 1, which is why 1+1=2. If 3 is defined as the successor of 2, then we will have 2+1 = 3. But, if instead, 4 was defined as the successor of 2, and 3 is defined as the successor of 4, then yes we do have 2+2 = 3.

Alternatively, \( 2 + 2 \equiv 3 \pmod{1} \). So yes, there are universes (even on earth), where we allow for that arithmetic. – Calvin Lin Staff · 1 year, 7 months ago

Log in to reply

– Agnishom Chattopadhyay · 1 year, 7 months ago

Could there be an universe where the laws of thought do not hold?Log in to reply

– Michael Mendrin · 1 year, 7 months ago

We're almost already doing that right now in the absolutely weird and often incomprehensible field of quantum mechanics. Quantum mechanics has already stirred vigorous re-examination of the foundations of logic, i.e., it's shaking up our notions about "laws of thought". If you want to see some otherworldly "laws of thought", check out quantum logic.Log in to reply

Maybe there is another type of maths where you can divide by zero.... – Curtis Clement · 1 year, 7 months ago

Log in to reply

– Agnishom Chattopadhyay · 1 year, 7 months ago

Wheel theory!Log in to reply

– Brian Charlesworth · 1 year, 7 months ago

Someone reinvented the wheel!? :) I hadn't heard of Wheel Theory before, so thanks for mentioning it. It's a bit weird, but apparently it serves as a better model for the way a computer actually does arithmetic, with "apparently" being the operative word here. Of course, as per our discussion, it doesn't need to be useful, it just needs to be. :DLog in to reply

Is the axiom of choice correct? – Jake Lai · 1 year, 7 months ago

Log in to reply

– Michael Mendrin · 1 year, 7 months ago

It's an axiom, which means it's up to you if you want to assume it to be true. You can equally assume it to be false, and thus define a different branch of mathematics. The classic example is the Parallel postulate, of which there are at least 3 variations, 1) given a line and through a given point not on it, only 1 line can be parallel to the first 2) ditto, but no lines can be parallel, 3) ditto, but many lines can be parallel, the 3 variations which have led to 1) Euclidean geometry, 2) Riemann geometry, and 3) Lobachevskian geometry. All of them "not incorrect".Log in to reply

– Jake Lai · 1 year, 7 months ago

Good examples! I just wanted to bring up the often controversial axiom of choice to make the point about there being no absolute mathematics, and that different paradigms of mathematics already exist simultaneously, each with their own unique set of axioms.Log in to reply

– Michael Mendrin · 1 year, 7 months ago

Oh, well, that was a really good choice you made, the [infamous] Axiom of Choice. It's almost as bad as having to make an whole axiom in response to the simple question, "Can I pick?" An universe where you aren't even allowed to pick anything at all would be a strange one, all right.Log in to reply

The ultimate goal of mathematics is to eliminate any need for intelligent thought. – Satvik Golechha · 1 year, 7 months ago

Log in to reply

– Michael Mendrin · 1 year, 7 months ago

I STRONGLY and VOCIFEROUSLY disagree with that view!Log in to reply

– Brian Charlesworth · 1 year, 7 months ago

I second Michael on this one; see my comments to Bobbym None below.Log in to reply

– Agnishom Chattopadhyay · 1 year, 7 months ago

Maybe, but over here that is not what I mean by mathematics.Log in to reply

@John Muradeli Your views please? – Agnishom Chattopadhyay · 1 year, 7 months ago

Log in to reply

Or, that's my initial response.

Then, YES!

Either way, I will put this on my "to do when you have room to breathe" - list. Thanks! – John Muradeli · 1 year, 7 months ago

Log in to reply

@Arron Kau , @Calvin Lin , @bobbym none : I'd be obliged to have your opinion here. – Agnishom Chattopadhyay · 1 year, 7 months ago

Log in to reply

– Bobbym None · 1 year, 7 months ago

"The ultimate goal of mathematics is to eliminate any need for intelligent thought." Whitehead may have been prophetic in that view. The Discretists led by Zeilberger and us computational boys could not agree more. The formalists think that mathematics is just a game with rules invented by humans for humans.Log in to reply

– Brian Charlesworth · 1 year, 7 months ago

Mathematics has no "goal". It has axioms and rules of our choosing, (see Michael's comments above), can be used as a prosaic tool or an artist's paint brush, be a salvation for compulsive minds, and more, but it certainly has no overarching goal. Philosophy has goals but no rules, physics has both goals and (some) rules, and mathematics has rules but no goals. AI researchers and advocates may share Whitehead's view, but I doubt Gödel or von Neumann did. To this end, a quote from the latter: "The whole system [i.e., "pure" mathematics] seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." The fact that so much of this "uselessness" eventually finds a use is besides the point; just because something ends up being useful doesn't mean that there was any initial objective to be so.Log in to reply

Over here, we are picturing mathematics as an activity rather than a structure. I do not mean that mathematics is supposed to take over intelligence but think of it, the more mechanical the results the cooler it is. Would you rather prove a theorem that is much generalised or would you want it to have five cases? Which do you think would be more elegant?

It is not possible to define intelligence but let's accept equating it with raw processing power for a second. Which algorithm would a mathematician want to develop more? An O(n^2) algorithm or an O(n log(n)) algorithm?

Think for a second what if the quartic formula was as easy as the quadratic formula. Would you call the simplifier a good mathematician?

Isn't a mathematician with a general solution with a problem far better than a mathematician who can solve a few cases and gives you an algorithm that is time consuming and have to make you think how to optimise it? E.g, compare Fermat's Little theorem and Euler generalisation.

And oh, take the popular example of Wolfram|Alpha. Many people on Brilliant (not me) look down upon its users believing that it is of low intelligence to use it. But wouldn't you consider yourself a great mathematician, if you could program your own Wolfram|Alpha? – Agnishom Chattopadhyay · 1 year, 7 months ago

Log in to reply

– Brian Charlesworth · 1 year, 7 months ago

Improving existing tools is never a bad thing, whether it's in mathematics, carpentry or any creative/productive venture. It helps to lessen the drudgery and more fully access our potential. Making new tools that make several existing tools redundant can be considered an even greater achievement, (although it may put a few noses out of joint). Creating "tools", if you can call them that, which have no clear and present use might be seen as foolish by the general public, but that is often what happens in mathematics. These are the "What ifs", and they've played, and will continue to play, a crucial role in our epistemological and technological evolution, but they were prompted by curiosity rather than necessity. Whatever allows us to reach our creative potential is a good thing, and that's what mathematics has always done and will continue to do, so I don't know where Whitehead was coming from when he said, that, (if indeed he did). Perhaps the quote had some additional context that we are not privy to, or perhaps he was just having a no-good, very bad day. :(Log in to reply

Even though Alfred Whitehead spent much of his life in trying to develop the "definite axiomatization of mathematics" (and failed grandly!), I have my doubts that he actually said that quote. It doesn't quite sound like him. – Michael Mendrin · 1 year, 7 months ago

Log in to reply

Though mathematics actually encourages more intelligent and creative thought, it is driven by the inspiration to eliminate the need of it from wherever possible. – Agnishom Chattopadhyay · 1 year, 7 months ago

Log in to reply

– Michael Mendrin · 1 year, 7 months ago

I think it feeds on itself. While physicists and mathematicians loathe unexplained strange behavior, as soon as they resolve strange behavior so that it's no longer strange, they go look for more. Kind of like how entomologists are fascinated by the weirdest bugs they can find---even if it takes them halfway around the world. I know I'm guilty of that, I look for the weird and the strange in physics and mathematics, and then complain that it makes no sense, while being secretly excited to have found such things.Log in to reply

In trying to verify the real origin of the quote, "The ultimate goal of mathematics is to eliminate all need for intelligent thought", attributed to Alfred North Whitehead, I've accidentally found a nice PDF book (free!) that seems like an excellent reference book for problems typically found in Brilliant

Concrete Mathematics

I still can't find out if Alfred is actually the author of that quote. But the context of it has to do with "mechanization of mathematics", i.e. the project of putting it all into a computer in algorithmic form, so that the "drudgery of mathematical computation", including proofs, is eliminated, and we all just go ask Wolfram Alpha. I'm sure Stephen Wolfram would just like that. – Michael Mendrin · 1 year, 7 months ago

Log in to reply

– Brian Charlesworth · 1 year, 7 months ago

Interesting book, and free is always good. :) I've just read the preface so far, and I find the philosophy behind it quite refreshing. As for the Whitehead quote, I agree that, if indeed he did say it, then there must have been some additional context. He was a deep thinker, so taking this quote at face value would do a disservice to his legacy.Log in to reply

Only kidding, I found it in A=B – Agnishom Chattopadhyay · 1 year, 7 months ago

Log in to reply