## Excel in math and science

### Master concepts by solving fun, challenging problems.

## It's hard to learn from lectures and videos

### Learn more effectively through short, conceptual quizzes.

## Our wiki is made for math and science

###
Master advanced concepts through explanations,

examples, and problems from the community.

## Used and loved by over 5 million people

###
Learn from a vibrant community of students and enthusiasts,

including olympiad champions, researchers, and professionals.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestPlease note that Fermat's last theorem was originated from Pythagoras Theorem, where he (Fermat), must had known a very basic and simple trick which is too elementary to prove, what is the trick?,

"A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers"

Powerful number : is an integer which has all of its prime factors exponent are greater than one

Log in to reply

We may generalize the exponent to be a real positive algebraic number say (g), the generalization would be as this:

have no solution in distinct positive coprime integers, (X < Y < Z), where (g) is greater than two

This has a specific history that was older than accepted proof of FLT

Log in to reply

I don't know how to generalize Fermat's Last Theorem, but I can give you a link. This paper is Andrew Wiles' original paper on his proof of Fermat's Last Theorem. It is called "Modular elliptic curves and Fermat's Last Theorem".

Log in to reply

This link is very useful in this regard: http://hsm.stackexchange.com/questions/3257/sum-of-like-powers-in-real-numbers

Log in to reply

Editt: I mean "A primitive Pythagoras triplets (in co prime integers), are impossible with all sides of a right angle triangle being as powerful numbers", or "A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers of this form (x^n, y^m, z), where (n, m) are positive integers > 1, and (x, y, z) are positive integers"

Log in to reply