Editt: I mean "A primitive Pythagoras triplets (in co prime integers), are impossible with all sides of a right angle triangle being as powerful numbers", or "A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers of this form (x^n, y^m, z), where (n, m) are positive integers > 1, and (x, y, z) are positive integers"

Please note that Fermat's last theorem was originated from Pythagoras Theorem, where he (Fermat), must had known a very basic and simple trick which is too elementary to prove, what is the trick?,

"A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers"

Powerful number : is an integer which has all of its prime factors exponent are greater than one

I don't know how to generalize Fermat's Last Theorem, but I can give you a link. This paper is Andrew Wiles' original paper on his proof of Fermat's Last Theorem. It is called "Modular elliptic curves and Fermat's Last Theorem".

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThis link is very useful in this regard: http://hsm.stackexchange.com/questions/3257/sum-of-like-powers-in-real-numbers

Log in to reply

Editt: I mean "A primitive Pythagoras triplets (in co prime integers), are impossible with all sides of a right angle triangle being as powerful numbers", or "A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers of this form (x^n, y^m, z), where (n, m) are positive integers > 1, and (x, y, z) are positive integers"

Log in to reply

Please note that Fermat's last theorem was originated from Pythagoras Theorem, where he (Fermat), must had known a very basic and simple trick which is too elementary to prove, what is the trick?,

"A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers"

Powerful number : is an integer which has all of its prime factors exponent are greater than one

Log in to reply

We may generalize the exponent to be a real positive algebraic number say (g), the generalization would be as this:

have no solution in distinct positive coprime integers, (X < Y < Z), where (g) is greater than two

This has a specific history that was older than accepted proof of FLT

Log in to reply

I don't know how to generalize Fermat's Last Theorem, but I can give you a link. This paper is Andrew Wiles' original paper on his proof of Fermat's Last Theorem. It is called "Modular elliptic curves and Fermat's Last Theorem".

Log in to reply