Waste less time on Facebook — follow Brilliant.
×

Can you please help me solve this?

\(PQ\) is a diameter of circle and \(XY \) is chord equal to the radius of the circle. \(PX\) and \(QY\) when extended intersect at \(E\). Prove that \( \angle PEQ = 60^\circ \).

Note by Vishwathiga Jayasankar
1 year, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Let \(O\) denote circle center. It can be shown in general that \(\angle PEQ = \angle OXY=\angle OYX\) regardless of \(XY\) length and if it is parallel to \(PQ\) or not.

\(\angle OPX=\angle OXP, \angle OQY=\angle OYQ\)

\(\angle E = 180-\angle OPX - \angle OQY = 180-\angle OXP-\angle OYQ=180 - \angle YXE - \angle XYE\)

\((180-\angle OXP - \angle YXE) +(180-\angle OYQ-\angle XYE)=2 \angle OXY = 2 \angle E \Rightarrow\)

\(\angle E=\angle OXY\)

Maria Kozlowska - 1 year, 8 months ago

Log in to reply

Akshat Sharda - 1 year, 8 months ago

Log in to reply

Are PQ and XY parallel?

Deeparaj Bhat - 1 year, 8 months ago

Log in to reply

I at first thought that might be a necessary condition, but after looking at several orientations for \(XY\) it appears that \(\angle PAQ = 60^{\circ}\) in general, which would be an interesting result.

Brian Charlesworth - 1 year, 8 months ago

Log in to reply

So it will be 60° even if PQ and XY are not parallel ?

Akshat Sharda - 1 year, 8 months ago

Log in to reply

@Akshat Sharda Yes, I haven't determined a proof yet, but that result does seem to hold in general.

Brian Charlesworth - 1 year, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...