Waste less time on Facebook — follow Brilliant.
×

Can you prove ?!

Prove that \(cos(1^{o})\) is irrational

Note by A K
3 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

The following is the standard approach.

Using the method of proof by contradiction, assume that \(\cos(1^{\circ})\) is rational.

Then \(\cos(2^{\circ}) = 2*\cos^{2}(1^{\circ}) - 1\) must also be rational.

Now \(\cos(k^{\circ} + 1^{\circ}) + \cos(k^{\circ} - 1^{\circ}) = 2\cos(k^{\circ})\cos(1^{\circ})\).

Using this equation, now that we have, by assumption, \(\cos(1^{\circ})\) and hence \(\cos(2^{\circ})\) as rational, (in addition to the fact that \(\cos(0^{\circ}) = 1\) is rational), we see that in turn \(\cos(n^{\circ})\) is rational for each successive integer. But \(\cos(30^{\circ}) = \frac{\sqrt{3}}{2}\) is clearly irrational, thus implying that the original assumption, i.e., that \(\cos(1^{\circ})\) is rational, is in fact false.

Brian Charlesworth - 3 years, 2 months ago

Log in to reply

HAVE U USED INDUCTION

Vishwesh Agrawal - 3 years, 2 months ago

Log in to reply

Yes, I have essentially used strong induction on the equation

\(\cos(k^{\circ} + 1^{\circ}) = 2\cos(k^{\circ})\cos(1^{\circ}) - \cos(k^{\circ} - 1^{\circ})\).

Brian Charlesworth - 3 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...