\(Can\quad the\quad sum\quad of\quad all\quad positive\quad integers\quad be\quad -\frac { 1 }{ 12 }\) ?

\(Is\quad \sum _{ 1 }^{ \infty } =-\frac { 1 }{ 12 } ?\\ \quad\)

Note by Kristian Vasilev
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(Let\quad S=\sum _{ 1 }^{ \infty } ,{ S }_{ 1 }=1-1+1-1+1-1+...,{ S }_{ 2 }=1-2+3-4+5-6+.....\\ \quad \quad \quad { S }_{ 1 }=1-1+1-1+1-1+....\quad \\ \quad \quad \quad +\\ \quad \quad \quad \quad \quad { S }_{ 1 }=1-1+1-1+1-.....\\ \quad So\quad 2{ S }_{ 1 }=1,therefore\quad { S }_{ 1 }=\frac { 1 }{ 2 } ,then\\ { S }_{ 2 }=1-2+3-4+5-6+....\\ +\\ \quad \quad { S }_{ 2 }=1-2+3-4+5-6+.....\\ So\quad 2{ S }_{ 2 }=1-1+1-1+1-1+...=\frac { 1 }{ 2 } ,therefore\quad { { S }_{ 2 }= }\frac { 1 }{ 4 } \\ { S }_{ 2 }=1-2+3-4+5-6+...=1+2+3+4+5+6+.....-2(2+4+6+8+...)\\ { S }_{ 2 }=S-2\times 2S=-3S=\frac { 1 }{ 4 } \\ Therefore\quad S=-\frac { 1 }{ 12 } .\)

Kristian Vasilev - 3 years, 6 months ago

Log in to reply

can you clarify summation of what? is it x

U Z - 3 years, 6 months ago

Log in to reply

Have I any mistakes?

Kristian Vasilev - 3 years, 6 months ago

Log in to reply

I think this should be multiplication

Martin Nikolov - 3 years, 6 months ago

Log in to reply

@Martin Nikolov yes it is

Kristian Vasilev - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...