Cantors Infinity Theory

I might be wrong , but I think Cantor tried to say something like x approaching infinity vs x= infinity , and I think he almost proved that infinities can be different (IDK if he was successful ).

Note by Aditya Pandey
4 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Infinities are different. There are an infinite number of prime numbers. There are an infinite number of real numbers. But the number of primes and reals aren't equal.

Mursalin Habib - 4 years, 3 months ago

Log in to reply

One case where the sets aren't equal if one of the sets contains the other set. For example, the number of odd numbers is equal to the number of even numbers because the sets have no common elements, but the perfect squares and positive integers are not equal because the positive integers contains the set of perfect squares \(\textit{as well}\) as the set of non-squares. However, this can be kind of confusing because for every natural number \(n,\) there is a number \(n^2.\)

Trevor B. - 4 years, 3 months ago

Log in to reply

But in fact, the sets you mentioned have equal size. Your last statement pretty much disproved what you said; if we could find a 1-1 correspondence between two sets, then they are equal. The 1-1 correspondence between positive integers and perfect squares is exactly \(n\iff n^2\), so the sets are equal.

Daniel Liu - 4 years, 3 months ago

Log in to reply

Here's an interesting read about this. It's also darn funny!

Mursalin Habib - 4 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...