Car at a Stoplight

So this is a problem I always thought about ever since I was 7 years old and had recently learned about the most basic probability (coin probability). A light changes once every two minutes. A driver pulls up to the light with no idea as to when the light last changed. However, he knows that the light changes periodically every two minutes. The driver is then faced with a tough question: How long should he keep his engine running to minimize the expected amount of gasoline used?

Car specs:

While idle with the engine on, his car uses .5 gallons of gas per minute (gpm).

If he turns the engine off, it requires .4 gallons of gas to turn the engine back on.

I feel like the answer is that he should either immediately turn his engine off or keep it running depending upon which one is greater: gpm or gallons used to restart the car. However, are there any values of gpm and gallons used to restart that yield an answer where the man has to keep his engine on for a little and then turn it off? I think the only scenario where this happens is when the probability of the light turning green is not the same at all times, but rather has a probability of changing that is proportional to time. What do you guys think?

Note by Trevor Arashiro
3 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...